Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Alemán | MEDLINE | ID: mdl-37233812

RESUMEN

This review describes the effects and potential health risks of resistant microorganisms, resistance genes, and residues of drugs and biocides that occur when re-using wastewater for crop irrigation. It focusses on specific aspects of these contaminants and their interactions, but does not provide a general risk assessment of the microbial load when using reclaimed water.Antimicrobial residues, antimicrobial resistant microorganisms, and resistance genes are frequently detected in treated wastewater. They have effects on the soil and plant-associated microbiota (total associated microorganisms) and can be taken up by plants. An interaction of residues with microorganisms is mainly expected before using the water for irrigation. However, it may also occur as a combined effect on the plant microbiome and all the abundant resistance genes (resistome). Special concerns are raised as plants are frequently consumed raw, that is, without processing that might reduce the bacterial load. Washing fruits and vegetables only has minor effects on the plant microbiome. On the other hand, cutting and other processes may support growth of microorganisms. Therefore, after such process steps, cooling of the foods is required.Further progress has to be made in the treatment of wastewater that will be used for crop irrigation with respect to removing micropollutants and microorganisms to minimize the risk of an increased exposure of consumers to transferable resistance genes and resistant bacteria.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Antibacterianos , Riego Agrícola/métodos , Alemania , Agua
2.
Artículo en Inglés | MEDLINE | ID: mdl-35380531

RESUMEN

Here we present the description of a novel Pseudomonas species, designated Pseudomonas rustica sp. nov., which was isolated from raw milk samples obtained from Germany. Results of initial 16S rRNA gene sequence analysis assigned the strain into the genus Pseudomonas and showed Pseudomonas helmanticensis, Pseudomonas neuropathica and Pseudomonas atagonensis to be its closest relatives. Further studies including sequence analysis of the rpoB gene, multi-gene phylogenetic tree reconstruction, whole-genome sequence comparisons, cellular fatty acid analysis and chemotaxonomic characterization showed a clear separation from the known Pseudomonas species. Isolate MBT-4T was closely related to Pseudomonas helmanticensis, 'Pseudomonas crudilactis' and Pseudomonas neuropathica with average nucleotide identities based on blast values of 88.8, 88.8 and 88.6%, respectively. Therefore, the strain can be classified into the Pseudomonas koreensis subgroup of the Pseudomonas fluorescens group. The G+C content of strain MBT-4T was 58.9 mol%. The strain was catalase- and oxidase-positive, while the ß-galactosidase reaction was negative. Growth occurred between 4 and 30 °C and at pH values from pH 6.0 to 8.0. In conclusion, strain MBT-4T belongs to a novel species, for which the name Pseudomonas rustica sp. nov. is proposed. The type strain is MBT-4T (=DSM 112348T=LMG 32241T) and strain MBT-17 is also a representative of this species.


Asunto(s)
Ácidos Grasos , Leche , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Granjas , Ácidos Grasos/química , Genes Bacterianos , Hibridación de Ácido Nucleico , Filogenia , Pseudomonas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Crit Rev Food Sci Nutr ; 60(18): 3103-3132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31656083

RESUMEN

Yeasts are eukaryotic microorganisms which have a long history in the biotechnology of food production, as they have been used since centuries in bread-making or in the production of alcoholic beverages such as wines or beers. Relative to this importance, a lot of research has been devoted to the study of yeasts involved in making these important products. The role of yeasts in other fermentations in association with other microorganisms - mainly lactic acid bacteria - has been relatively less studied, and often it is not clear if yeasts occurring in such fermentations are contaminants with no role in the fermentation, spoilage microorganisms or whether they actually serve a technological or functional purpose. Some knowledge is available for yeasts used as starter cultures in fermented raw sausages or in the production of acid curd cheeses. This review aimed to summarize the current knowledge on the taxonomy, the presence and potential functional or technological roles of yeasts in traditional fermented plant, dairy, fish and meat fermentations.


Asunto(s)
Microbiología de Alimentos , Levaduras , Animales , Cerveza , Pan , Fermentación
4.
Compr Rev Food Sci Food Saf ; 19(4): 2013-2049, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33337106

RESUMEN

Milk and milk products have been utilized by humans for many thousands of years. With the advent of metagenomic studies, our knowledge on the microbiota of milk and milk products, especially as affected by the environment, production, and storage parameters, has increased. Milk quality depends on chemical parameters (fat and protein content and absence of inhibitory substances), as well as microbial and somatic cells counts, and affects the price of milk. The effects of hygiene and effective cooling on the spoilage microbiota have shown that proteolytic and lipolytic bacteria such as Pseudomonas or Acinetobacter spp. predominate the spoilage bacterial populations. These bacteria can produce heat-stable proteases and lipases, which remain active after pasteurization and thus can spoil the milk during prolonged storage. Additionally, milk can become contaminated after pasteurization and therefore there is still a high demand on developing better cleaning and sanitation regimes and equipment, as well as test systems to (quantitatively) detect relevant pathogenic or spoilage microorganisms. Raw milk and raw milk cheese consumption is also increasing worldwide with the growing demand of minimally processed, sustainable, healthy, and local foods. In this context, emerging and re-emerging pathogens once again represent a major food safety challenge. As a result of global warming, it is conceivable that not only microbiological risks but also chemical risks relating to presence of mycotoxins or plant toxins in milk will increase. Herein, we provide an overview of the major microbial hazards occurring in the 21st century.


Asunto(s)
Productos Lácteos/microbiología , Microbiología de Alimentos , Leche/microbiología , Animales , Bacterias/crecimiento & desarrollo , Productos Lácteos/normas , Calidad de los Alimentos , Inocuidad de los Alimentos , Leche/normas
5.
BMC Microbiol ; 19(1): 250, 2019 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-31706266

RESUMEN

BACKGROUND: This study aimed to evaluate the safety of raw vegetable products present on the German market regarding toxin-producing Bacillus cereus sensu lato (s.l.) group bacteria. RESULTS: A total of 147 B. cereus s.l. group strains isolated from cucumbers, carrots, herbs, salad leaves and ready-to-eat mixed salad leaves were analyzed. Their toxinogenic potential was assessed by multiplex PCR targeting the hemolysin BL (hbl) component D (hblD), non-hemolytic enterotoxin (nhe) component A (nheA), cytotoxin K-2 (cytK-2) and the cereulide (ces) toxin genes. In addition, a serological test was used to detect Hbl and Nhe toxins. On the basis of PCR and serological results, none of the strains were positive for the cereulide protein/genes, while 91.2, 83.0 and 37.4% were positive for the Hbl, Nhe and CytK toxins or their genes, respectively. Numerous strains produced multiple toxins. Generally, strains showed resistance against the ß-lactam antibiotics such as penicillin G and cefotaxim (100%), as well as amoxicillin/clavulanic acid combination and ampicillin (99.3%). Most strains were susceptible to ciprofloxacin (99.3%), chloramphenicol (98.6%), amikacin (98.0%), imipenem (93.9%), erythromycin (91.8%), gentamicin (88.4%), tetracycline (76.2%) and trimethoprim/sulfamethoxazole combination (52.4%). The genomes of eight selected strains were sequenced. The toxin gene profiles detected by PCR and serological test mostly agreed with those from whole-genome sequence data. CONCLUSIONS: Our study showed that B. cereus s.l. strains encoding toxin genes occur in products sold on the German market and that these may pose a health risk to the consumer if present at elevated levels. Furthermore, a small percentage of these strains harbor antibiotic resistance genes. The presence of these bacteria in fresh produce should, therefore, be monitored to guarantee their safety.


Asunto(s)
Antibacterianos/farmacología , Bacillus cereus/fisiología , Toxinas Bacterianas/genética , Farmacorresistencia Microbiana , Verduras/microbiología , Bacillus cereus/efectos de los fármacos , Bacillus cereus/aislamiento & purificación , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Alemania , Filogenia , Secuenciación Completa del Genoma
6.
Artículo en Inglés | MEDLINE | ID: mdl-33620302

RESUMEN

In this study, nine Gram-negative, motile and rod-shaped bacteria were isolated during a Germany-wide investigation of raw milk microbiota. The strains could be differentiated from their closest relatives by phenotypic and chemotaxonomic characterization and average nucleotide identity (ANIb) values calculated from draft genome assemblies. Strains MBT-1T, MBT-8, MBT-9, MBT-10, MBT-11 and MBT-12 were related to the Pseudomonas chlororaphis subgroup. Isolates MBT-2T, MBT-13 and MBT-14 were closely related to Pseudomonas rhizosphaerae DSM 16299T with an ANIb of 88.2 % and a genome-to-genome distance result of 36.0 %. The G+C content of the DNA of strains MBT-1T and MBT-2T was 60.84 and 62.48 mol%, respectively. The major fatty acids were C16 : 1 ω7c (summed feature 3), C16 : 0 and C18 : 1 ω7c (summed feature 8). The strains were catalase-positive, while production of urease, ß-galactosidase and indole were negative. Growth occurred at 4-30 °C and at pH values of pH 6.0-8.0. Based on these results, we conclude that the strains belong to two novel species, for which the names Pseudomonas kielensis sp. nov. and Pseudomonas baltica sp. nov. are proposed. The type strains are MBT-1T (=DSM 111668 T= LMG 31954T) and MBT-2T (=DSM 111761 T=LMG 31955T).

7.
Appl Microbiol Biotechnol ; 103(10): 4137-4151, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30941461

RESUMEN

The cycloalkanes, comprising up to 45% of the hydrocarbon fraction, occur in crude oil or refined oil products (e.g., gasoline) mainly as alkylated cyclohexane derivatives and have been increasingly found in environmental samples of soil and water. Furthermore, short-chain alkylated cycloalkanes are components of the so-called volatile organic compounds (VOCs). This study highlights the biotransformation of methyl- and ethylcyclohexane by the alkane-assimilating yeast Candida maltosa and the phenol- and benzoate-utilizing yeast Trichosporon mucoides under laboratory conditions. In the course of this biotransformation, we detected 25 different metabolites, which were analyzed by HPLC and GC-MS. The biotransformation process of methylcyclohexane in both yeasts involve (A) ring hydroxylation at different positions (C2, C3, and C4) and subsequent oxidation to ketones as well as (B) oxidation of the alkyl side chain to hydroxylated and acid products. The yeast T. mucoides additionally performs ring hydroxylation at the C1-position and (C) oxidative decarboxylation and (D) aromatization of cyclohexanecarboxylic acid. Both yeasts also oxidized the saturated ring system and the side chain of ethylcyclohexane. However, the cyclohexylacetic acid, which was formed, seemed not to be substrate for aromatization. This is the first report of several new transformation reactions of alkylated cycloalkanes for eukaryotic microorganisms.


Asunto(s)
Candida/metabolismo , Ciclohexanos/metabolismo , Redes y Vías Metabólicas , Trichosporon/metabolismo , Biotransformación , Cromatografía Líquida de Alta Presión , Contaminantes Ambientales/metabolismo , Cromatografía de Gases y Espectrometría de Masas
8.
Int J Syst Evol Microbiol ; 68(1): 371-376, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29231158

RESUMEN

A Gram-stain-negative, rod-shaped Proteobacteria isolate, MBT G8648T, was obtained from an acid curd cheese called Quargel. The isolate was moderately salt tolerant and motile, with numerous peritrichous flagella. The 16S rRNA gene sequence analysis indicated that the strain belongs to the genus Halomonas, with 98.42 % 16S rRNA gene sequence similarity with Halomonas titanicae BH1T as nearest related neighbour. Further comparative sequence analysis of secA and gyrB genes, as well as physiological and biochemical tests, revealed that this bacterium formed a taxon well-separated from its nearest neighbours and other established Halomonas species. Thus, the strain represents a new species, for which the name Halomonas nigrificans sp. nov. is proposed, with strain MBT G8648T (=LMG 29097T =DSM 105749T) as type strain.


Asunto(s)
Queso/microbiología , Microbiología de Alimentos , Halomonas/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Europa (Continente) , Genes Bacterianos , Halomonas/genética , Halomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Food Microbiol ; 76: 473-480, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30166176

RESUMEN

The effect of iodine present in 1.0% table salt in combination with the use of starter cultures in sauerkraut fermentations were investigated in order to determine whether iodine interferes with lactic acid bacteria responsible for the fermentation. The effect of iodine was tested in fermentations performed using selected starter cultures or without starters (spontaneous fermentation). Lactobacillus plantarum and Leuconostoc mesenteroides used as starters at levels of ca. 1 × 107 cfu ml-1 led to a quick establishment of lactic acid bacteria (LAB) as predominant microorganisms, reaching 1 × 109 cfu ml-1 after 24 h decreasing the pH to below 4.0. In contrast, LAB counts in control fermentations without starters increased slower from 1 × 105 cfu ml-1 to 1 × 109 cfu ml-1 and a pH reduction below 4.0 was achieved only after 3 days fermentation. A metagenomic investigation showed a more diverse bacterial community in fermentations without starters, consisting of enterobacteria and pseudomonads in the first days of fermentation, and of LAB such as lactococci in the later stages. In fermentations with starters, lactobacilli predominated. Leuconostocs also occurred, but at much lower sequence abundance than lactobacilli, and thus were not able to predominate. Determination of iodine in the fermentation with starter bacteria and with iodized salt showed that the fermentation did not affect iodine concentration. The use of iodized salt did not statistically significantly influence microbial populations in the fermentation. Thus, there is no basis for the popular held belief that the use of iodized salt inhibits the growth of the bacteria important for the sauerkraut fermentation. A statistically near significant effect (p = 0.06), however, was noted for the effect of iodine on yeasts and mould populations in the fermentations performed without starter cultures. As sauerkraut is usually produced without starters, this should be further investigated.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Brassica/microbiología , Alimentos Fermentados/microbiología , Yodo/metabolismo , Cloruro de Sodio Dietético/metabolismo , Bacterias/clasificación , Bacterias/genética , Brassica/química , Fermentación , Alimentos Fermentados/análisis , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Lactobacillus plantarum/genética , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/metabolismo , Leuconostoc/genética , Leuconostoc/aislamiento & purificación , Leuconostoc/metabolismo
10.
Foodborne Pathog Dis ; 14(9): 502-509, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28594569

RESUMEN

Two hundred fresh produce samples (cucumber, carrots, herbs, leaf lettuce, and ready-to-eat mixed salad leaves) were obtained from retail in northern Germany in 2015. These were investigated for microbial contamination and the presence of foodborne pathogens, including Listeria monocytogenes, Salmonella serovars, presumptive Bacillus (B.) cereus, and Shiga toxin-producing Escherichia coli using culture-dependent (enrichment, plating on selective media) and -independent (real-time polymerase chain reaction [PCR]) techniques. Overall, our results showed that the fresh produce samples generally showed high mean aerobic mesophilic bacterial counts of between 7 and 8 log10 cfu/g. However, there was also a considerable variation in total aerobic bacterial counts between different product samples. Although real-time PCR signals for pathogenic E. coli were detected in 14.0% of total samples analyzed, only one (0.5%) Shiga toxin-producing E. coli isolate of serotype O26:H11 was recovered from mixed salad leaves and contained stx1, stx2, and eae genes. Two L. monocytogenes isolates (1% of total samples) were recovered from packaged mixed salad leaves and belonged to PCR serogroups IIb and IVb, respectively. One Salmonella isolate (0.5%) was recovered after selective enrichment also from mixed salad leaves and it was identified as Salmonella Szentes serotype 16:k:1,2. Overall the incidence of foodborne pathogens on the northern German retail market in 2015 was very low.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes/aislamiento & purificación , Salmonella/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Verduras/microbiología , Alemania , Humanos , Listeria monocytogenes/genética , Salmonella/genética , Escherichia coli Shiga-Toxigénica/genética
11.
Appl Environ Microbiol ; 82(21): 6326-6334, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542931

RESUMEN

In 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rare Escherichia coli serotype, O104:H4, that shared the virulence profiles of Shiga toxin-producing E. coli (STEC)/enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food or in vitro, were compared with those of E. coli O157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable than E. coli O157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward several E. coli strains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead of E. coli O157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential. IMPORTANCE: In 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive longer during the production of fermented sausages than E. coli O157:H7 strains. E. coli O104:H4 was also shown to be well adapted to the multiple adverse conditions encountered in fermented sausages, and the secretion of a bacteriocin may explain the competitive advantage of this strain in an EHEC strain cocktail. Consequently, this study strongly suggests that enhanced survival and persistence, and the presumptive production of a bacteriocin, may explain the increased virulence of the O104:H4 outbreak strain. Furthermore, this strain appears to be capable of surviving in a meat product, suggesting that meat should not be excluded as a source of potential E. coli O104:H4 infection.


Asunto(s)
Escherichia coli O104/fisiología , Escherichia coli O157/fisiología , Aptitud Genética , Productos de la Carne/microbiología , Viabilidad Microbiana , Animales , Brotes de Enfermedades , Escherichia coli Enterohemorrágica/clasificación , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enterohemorrágica/fisiología , Escherichia coli O104/crecimiento & desarrollo , Escherichia coli O104/patogenicidad , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/patogenicidad , Fermentación , Humanos , Alimentos Crudos/microbiología , Serogrupo , Porcinos , Virulencia
12.
Food Microbiol ; 53(Pt B): 15-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678125

RESUMEN

A survey of the psychrotolerant yeast microbiota of vacuum-packed beef was conducted between 2010 and 2012. Chilled vacuum-packed beef (n = 50) sampled from 15 different producers was found to have a mean psychrotolerant yeast count of 3.76 log cfu per cm(2). During this assessment, a recently described yeast named Kazachstania psychrophila was shown to be associated with this product. In order to gain basic knowledge about the spoilage potential of K. psychrophila in vacuum-packed beef, challenge studies were performed and the survival of three different K. psychrophila strains was analyzed during storage of artificially contaminated beef. Beef samples were inoculated with the yeasts at a contamination level of 2 log cfu per cm(2). Survival and growth of K. psychrophila strains was monitored on malt extract agar at regular intervals over 84 days. Kazachstania levels rapidly increased about 5 log units within 16 days under chill conditions (4 °C). Gas bubbles were observed after 16 days, while discoloration and production of off-flavors became evident after 42 days in inoculated samples. This study demonstrates for the first time, that the psychrotolerant yeast K. psychrophila is a dominant spoilage microorganism of vacuum-packed beef products stored at low temperatures, causing sensory defects which result in reduced shelf life, and consequently in considerable economic losses.


Asunto(s)
Contaminación de Alimentos/análisis , Carne/microbiología , Levaduras/crecimiento & desarrollo , Animales , Bovinos , Recuento de Colonia Microbiana , Embalaje de Alimentos , Carne/análisis , Vacio
13.
Food Microbiol ; 42: 26-33, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24929713

RESUMEN

The antimicrobial action of the curing agent sodium nitrite (NaNO2) in raw sausage fermentation is thought to mainly depend on the release of cytotoxic nitric oxide (NO) at acidic pH. Salmonella Typhimurium is capable of detoxifying NO via the flavohemoglobin HmpA, the flavorubredoxin NorV and the periplasmic cytochrome C nitrite reductase NrfA. In this study, the contribution of these systems to nitrosative stress tolerance in raw sausages was investigated. In vitro growth assays of the S. Typhimurium 14028 deletion mutants ΔhmpA, ΔnorV and ΔnrfA revealed a growth defect of ΔhmpA in the presence of acidified NaNO2. Transcriptional analysis of the genes hmpA, norV and nrfA in the wild-type showed a 41-fold increase in hmpA transcript levels in the presence of 150 mg/l acidified NaNO2, whereas transcription of norV and nrfA was not enhanced. However, challenge assays performed with short-ripened spreadable sausages produced with 0 or 150 mg/kg NaNO2 failed to reveal a phenotype for any of the mutants compared to the wild-type. Hence, none of the NO detoxification systems HmpA, NorV and NrfA is solely responsible for nitrosative stress tolerance of S. Typhimurium in raw sausages. Whether these systems act cooperatively, or if there are other yet undescribed mechanisms involved is currently unknown.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Conservantes de Alimentos/metabolismo , Hemoproteínas/metabolismo , Productos de la Carne/microbiología , Nitrato Reductasas/metabolismo , Óxido Nítrico/metabolismo , Salmonella typhimurium/enzimología , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Citocromos a1/genética , Citocromos c1/genética , Regulación Bacteriana de la Expresión Génica , Hemoproteínas/genética , Nitrato Reductasas/genética , Nitritos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Porcinos , Factores de Transcripción/genética
14.
Antonie Van Leeuwenhoek ; 104(6): 925-31, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23975512

RESUMEN

Five novel ascosporogenous yeast strains (H382, H396, H409, H433(T) and H441) were found through a survey of vacuum-packed beef microbiota. Sequence analysis of ITS domain and LSU rRNA genes showed that the new strains represent a distinct lineage within the genus Kazachstania, closely related to Kazachstania lodderae (97.0 % identity) and Kazachstania ichnusensis (96.1 % identity). The main difference of strains H382, H396, H409, H433(T) and H441 to strains of known Kazachstania species is the maximum growth temperature, which is below 20 °C for the new strains, whereas related species grow at 25 °C. Furthermore, the strains differed from known Kazachstania species in assimilation and fermentation patterns of carbon sources. Based on these characteristics, the five strains are considered to represent a novel species of the genus Kazachstania for which the name Kazachstania psychrophila sp. nov. is proposed. The type strain is H433(T) (DSM 26230(T)=CBS 12689(T)). The Mycobank number of the type strain is MB 803980.


Asunto(s)
Microbiología de Alimentos , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , Carbono/metabolismo , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Fermentación , Genes de ARNr , Microscopía , Datos de Secuencia Molecular , Técnicas de Tipificación Micológica , Filogenia , ARN de Hongos/genética , ARN Ribosómico/genética , Saccharomycetales/genética , Saccharomycetales/fisiología , Análisis de Secuencia de ADN , Temperatura
15.
Microorganisms ; 9(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530338

RESUMEN

The genetic heterogeneity of Heyndrickxia sporothermodurans (formerly Bacillussporothermodurans) was evaluated using whole genome sequencing. The genomes of 29 previously identified Heyndrickxiasporothermodurans and two Heyndrickxia vini strains isolated from ultra-high-temperature (UHT)-treated milk were sequenced by short-read (Illumina) sequencing. After sequence analysis, the two H. vini strains could be reclassified as H. sporothermodurans. In addition, the genomes of the H.sporothermodurans type strain (DSM 10599T) and the closest phylogenetic neighbors Heyndrickxiaoleronia (DSM 9356T) and Heyndrickxia vini (JCM 19841T) were also sequenced using both long (MinION) and short-read (Illumina) sequencing. By hybrid sequence assembly, the genome of the H. sporothermodurans type strain was enlarged by 15% relative to the short-read assembly. This noticeable increase was probably due to numerous mobile elements in the genome that are presumptively related to spore heat tolerance. Phylogenetic studies based on 16S rDNA gene sequence, core genome, single-nucleotide polymorphisms and ANI/dDDH, showed that H. vini is highly related to H. sporothermodurans. When examining the genome sequences of all H.sporothermodurans strains from this study, together with 4 H. sporothermodurans genomes available in the GenBank database, the majority of the 36 strains examined occurred in a clonal lineage with less than 100 SNPs. These data substantiate previous reports on the existence and spread of a genetically highly homogenous and heat resistant spore clone, i.e., the HRS-clone.

16.
Front Microbiol ; 11: 602444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391221

RESUMEN

Use of bacteriophages, which are viruses that kill bacteria, for biocontrol of pathogens and antimicrobial resistant bacteria has become increasingly important in recent years. As traditional culture-based methods are laborious and time-consuming, practicable use of bacteriophages will hinge on development of rapid and high throughput methods to analyze, characterize and screen large bacteriophage libraries. We thus established a novel method to fluorescently tag bacteriophages for virus screening and interaction studies, without the need for complicated and laborious purification procedures or genetic engineering of viruses to express fluorescent proteins. Bacteriophage PMBT14 was tagged using DNA dye Syto 13. Simply by using a membrane filter, tagged bacteriophages can be separated from non-sequestered excess dye rapidly, effortlessly, and cheaply. The procedure takes less than 30 min and makes use of simple laboratory consumables that are already commonly used for bacteriophage preparations. As proof of concept, we present here flow cytometric methods to analyze bacteriophage binding, infection and killing that are very accessible for high throughput analysis. We show that the resulting fluorescently tagged bacteriophage can be used to specifically stain its host bacterium Pseudomonas fluorescens DSM 50090. Individual fluorescent bacteriophages, their binding to and initial infection of bacteria could also be observed using confocal microscopy. The infection process was halted by the metabolic inhibitor sodium azide, suggesting a requirement of host metabolic processes for penetration by PMBT14. Flow cytometric live/dead assays was used as a complementary method to determine bacteriophage infection of its host. We made preliminary efforts to adapt the tagging method to two other bacteriophages and discuss potential pitfalls and solutions in the use of tagged phages. Fluorescent phage tagging has previously been demonstrated to facilitate analysis of bacteriophage-host interactions. The method adopted in this study makes it fast, easy as well as cost effective.

17.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272986

RESUMEN

The complete genome sequence of a Shiga toxin-producing Escherichia coli (STEC) O26:H11 strain, MBT-5 (sequence type 21 [ST21], stx 1a, stx 2a, eae, ehxA), and two draft genome sequences of Listeria monocytogenes strains MBT-6 and MBT-7 belonging to the virulent sequence types 1 (ST1, clonal complex 1 [CC1]) and 59 (ST59, CC59), respectively, were determined. The strains were isolated in 2015 from ready-to-eat mixed greens in Germany.

18.
Genome Announc ; 6(15)2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29650574

RESUMEN

The genome of the intimin (eae)-harboring Escherichia albertii strain MBT-EA1, isolated from lettuce in Germany, was sequenced. Sequence analysis showed the assembled draft genome size to be 4,560,948 bp, containing a predicted total of 4,414 protein-encoding genes, 11 rRNAs, and 82 tRNAs. Furthermore, three plasmid sequences were found.

19.
Front Microbiol ; 9: 536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636733

RESUMEN

Forty-seven Acinetobacter spp. isolates from milk powder obtained from a powdered milk producer in Germany were investigated for their antibiotic resistance susceptibilities, in order to assess whether strains from food harbor multiple antibiotic resistances and whether the food route is important for dissemination of resistance genes. The strains were identified by 16S rRNA and rpoB gene sequencing, as well as by whole genome sequencing of selected isolates and their in silico DNA-DNA hybridization (DDH). Furthermore, they were genotyped by rep-PCR together with reference strains of pan-European groups I, II, and III strains of Acinetobacter baumannii. Of the 47 strains, 42 were identified as A. baumannii, 4 as Acinetobacter Pittii, and 1 as Acinetobacter calcoaceticus based on 16S rRNA gene sequencing. In silico DDH with the genome sequence data of selected strains and rpoB gene sequencing data suggested that the five non-A. baumannii strains all belonged to A. pittii, suggesting that the rpoB gene is more reliable than the 16S rRNA gene for species level identification in this genus. Rep-PCR genotyping of the A. baumannii strains showed that these could be grouped into four groups, and that some strains clustered together with reference strains of pan-European clinical group II and III strains. All strains in this study were intrinsically resistant toward chloramphenicol and oxacillin, but susceptible toward tetracycline, tobramycin, erythromycin, and ciprofloxacin. For cefotaxime, 43 strains (91.5%) were intermediate and 3 strains (6.4%) resistant, while 3 (6.4%) and 21 (44.7%) strains exhibited resistance to cefepime and streptomycin, respectively. Forty-six (97.9%) strains were susceptible to amikacin and ampicillin-sulbactam. Therefore, the strains in this study were generally not resistant to the clinically relevant antibiotics, especially tobramycin, ciprofloxacin, cefepime, and meropenem, suggesting that the food route probably poses only a low risk for multidrug resistant Acinetobacter strains or resistance genes.

20.
J Microbiol Biotechnol ; 28(11): 1834-1845, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30562882

RESUMEN

The lactobacilli associated with a fermented goat milk product from Tajikistan were isolated to characterize their technological properties and antibiotic resistances in order to assess their suitability for development as starter cultures. In this study, twenty three strains were identified by 16S rRNA sequencing as typical dairy-associated lactic acid bacterial strains, i.e. L. plantarum, L. pentosus, L. delbrueckii, L. helveticus and L. paracasei. These strains were generally susceptible to most antibiotics tested in this study and this allowed a selection of strains as safe starters. The draft genomes of four representative strains were sequenced and the number of contigs of the four assembled genomes ranged from 51 to 245 and the genome sizes ranged from 1.75 to 3.24 Mbp. These representative strains showed differences in their growth behavior and pH-reducing abilities in in vitro studies. The co-inoculation of these Lactobacillus spp. strains together with a yeast Kluyveromyces marxianus MBT-5698, or together with the yeast and an additional Streptococcus thermophilus MBT-2, led to a pH reduction to 3.4 after 48 h. Only in the case of fermentation inoculated with the co-culture, the viscosity of the milk increased noticeably. In contrast, fermentations with single strains did not lead to gelation of the milk or to a decrease in the pH after 24h. The results of this study provide a comprehensive understanding of the predominant lactobacilli related to Tajikistani fermented milk products.


Asunto(s)
Productos Lácteos Cultivados/microbiología , Microbiología de Alimentos , Lactobacillales/aislamiento & purificación , Lactobacillales/fisiología , Animales , Antibacterianos/farmacología , Técnicas de Cocultivo , Fermentación , Genoma Bacteriano/genética , Cabras , Concentración de Iones de Hidrógeno , Lactobacillales/clasificación , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Leche/microbiología , ARN Ribosómico 16S/genética , Tayikistán , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA