Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
NPJ Precis Oncol ; 8(1): 127, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839865

RESUMEN

Chemotherapy such as cisplatin is widely used to treat ovarian cancer either before or after surgical debulking. However, cancer relapse due to chemotherapy resistance is a major challenge in the treatment of ovarian cancer. The underlying mechanisms related to chemotherapy resistance remain largely unclear. Therefore, identification of effective therapeutic strategies is urgently needed to overcome therapy resistance. Transcriptome-based analysis, in vitro studies and functional assays identified that cisplatin-resistant ovarian cancer cells express high levels of OSMR compared to cisplatin sensitive cells. Furthermore, OSMR expression associated with a module of integrin family genes and predominantly linked with integrin αV (ITGAV) and integrin ß3 (ITGB3) for cisplatin resistance. Using ectopic expression and knockdown approaches, we proved that OSMR directly regulates ITGAV and ITGB3 gene expression through STAT3 activation. Notably, targeting OSMR using anti-OSMR human antibody inhibited the growth and metastasis of ovarian cancer cells and sensitized cisplatin treatment. Taken together, our results underscore the pivotal role of OSMR as a requirement for cisplatin resistance in ovarian cancer. Notably, OSMR fostered the expression of a distinct set of integrin genes, which in turn resulted into a crosstalk between OSMR and integrins for signaling activation that is critical for cisplatin resistance. Therefore, targeting OSMR emerges as a promising and viable strategy to reverse cisplatin-resistance in ovarian cancer.

2.
STAR Protoc ; 3(2): 101340, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620072

RESUMEN

Conventional proximity ligation assay (PLA) suffers from target specificity issues that curtail their accuracy on interpreting proximal interactions in cell biology. Here, we present a reliable and sensitive approach by including a fluorochrome-labeled mRNA fragment along with biotin-labeled RNA probe and a target-specific antibody, which were used to generate proximal ligation signals through linear connectors in intact cells. This protocol will be particularly useful for studying the proximal interactions between RNA binding proteins (RBPs) and their target mRNAs in cells. For complete details on the use and execution of this protocol, please refer to George et al. (2021).


Asunto(s)
Anticuerpos , Proteínas de Unión al ARN , Anticuerpos/metabolismo , Fenómenos Biofísicos , Línea Celular , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
4.
Cancers (Basel) ; 14(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35205706

RESUMEN

Ovarian cancer is the most lethal gynecological malignancy among women worldwide and is characterized by aggressiveness, cancer stemness, and frequent relapse due to resistance to platinum-based therapy. Ovarian cancer cells metastasize through ascites fluid as 3D spheroids which are more resistant to apoptosis and chemotherapeutic agents. However, the precise mechanism as an oncogenic addiction that makes 3D spheroids resistant to apoptosis and chemotherapeutic agents is not understood. To study the signaling addiction mechanism that occurs during cancer progression in patients, we developed an endometrioid subtype ovarian cancer cell line named 'MCW-OV-SL-3' from the ovary of a 70-year-old patient with stage 1A endometrioid adenocarcinoma of the ovary. We found that the cell line MCW-OV-SL-3 exhibits interstitial duplication of 1q (q21-q42), where this duplication resulted in high expression of the PIK3C2B gene and aberrant activation of PI3K-AKT-ERK signaling. Using short tandem repeat (STR) analysis, we demonstrated that the cell line exhibits a unique genetic identity compared to existing ovarian cancer cell lines. Notably, the MCW-OV-SL-3 cell line was able to form 3D spheroids spontaneously, which is an inherent property of tumor cells when plated on cell culture dishes. Importantly, the tumor spheroids derived from the MCW-OV-SL-3 cell line expressed high levels of c-Kit, PROM1, ZEB1, SNAI, VIM, and Twist1 compared to 2D monolayer cells. We also observed that the hyperactivation of ERK and PI3K/AKT signaling in these cancer cells resulted in resistance to cisplatin. In summary, the MCW-OV-SL3 endometrioid cell line is an excellent model to study the mechanism of cancer stemness and chemoresistance in endometrioid ovarian cancer.

5.
Cell Rep ; 37(5): 109934, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731628

RESUMEN

Fragile X-related protein-1 (FXR1) gene is highly amplified in patients with ovarian cancer, and this amplification is associated with increased expression of both FXR1 mRNA and protein. FXR1 expression directly associates with the survival and proliferation of cancer cells. Surface sensing of translation (SUnSET) assay demonstrates that FXR1 enhances the overall translation in cancer cells. Reverse-phase protein array (RPPA) reveals that cMYC is the key target of FXR1. Mechanistically, FXR1 binds to the AU-rich elements (ARE) present within the 3' untranslated region (3'UTR) of cMYC and stabilizes its expression. In addition, the RGG domain in FXR1 interacts with eIF4A1 and eIF4E proteins. These two interactions of FXR1 result in the circularization of cMYC mRNA and facilitate the recruitment of eukaryotic translation initiation factors to the translation start site. In brief, we uncover a mechanism by which FXR1 promotes cMYC levels in cancer cells.


Asunto(s)
Factor 4F Eucariótico de Iniciación/metabolismo , Neoplasias Ováricas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Elementos Ricos en Adenilato y Uridilato , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Factor 4F Eucariótico de Iniciación/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Iniciación de la Cadena Peptídica Traduccional , Proteínas Proto-Oncogénicas c-myc/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Carga Tumoral
6.
Cancer Res ; 81(20): 5336-5352, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34380633

RESUMEN

Although patients with advanced ovarian cancer may respond initially to treatment, disease relapse is common, and nearly 50% of patients do not survive beyond five years, indicating an urgent need for improved therapies. To identify new therapeutic targets, we performed single-cell and nuclear RNA-seq data set analyses on 17 human ovarian cancer specimens, revealing the oncostatin M receptor (OSMR) as highly expressed in ovarian cancer cells. Conversely, oncostatin M (OSM), the ligand of OSMR, was highly expressed by tumor-associated macrophages and promoted proliferation and metastasis in cancer cells. Ovarian cancer cell lines and additional patient samples also exhibited elevated levels of OSMR when compared with other cell types in the tumor microenvironment or to normal ovarian tissue samples. OSMR was found to be important for ovarian cancer cell proliferation and migration. Binding of OSM to OSMR caused OSMR-IL6ST dimerization, which is required to produce oncogenic signaling cues for prolonged STAT3 activation. Human monoclonal antibody clones B14 and B21 directed to the extracellular domain of OSMR abrogated OSM-induced OSMR-IL6ST heterodimerization, promoted the internalization and degradation of OSMR, and effectively blocked OSMR-mediated signaling in vitro. Importantly, these antibody clones inhibited the growth of ovarian cancer cells in vitro and in vivo by suppressing oncogenic signaling through OSMR and STAT3 activation. Collectively, this study provides a proof of principle that anti-OSMR antibody can mediate disruption of OSM-induced OSMR-IL6ST dimerization and oncogenic signaling, thus documenting the preclinical therapeutic efficacy of human OSMR antagonist antibodies for immunotherapy in ovarian cancer. SIGNIFICANCE: This study uncovers a role for OSMR in promoting ovarian cancer cell proliferation and metastasis by activating STAT3 signaling and demonstrates the preclinical efficacy of antibody-based OSMR targeting for ovarian cancer treatment.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Subunidad beta del Receptor de Oncostatina M/antagonistas & inhibidores , Neoplasias Ováricas/prevención & control , Factor de Transcripción STAT3/antagonistas & inhibidores , Microambiente Tumoral , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Proliferación Celular , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Oncostatina M/genética , Oncostatina M/metabolismo , Subunidad beta del Receptor de Oncostatina M/inmunología , Subunidad beta del Receptor de Oncostatina M/metabolismo , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Pronóstico , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Res ; 80(24): 5554-5568, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33087324

RESUMEN

Peritoneal spread is the primary mechanism of metastasis of ovarian cancer, and survival of ovarian cancer cells in the peritoneal cavity as nonadherent spheroids and their adherence to the mesothelium of distant organs lead to cancer progression, metastasis, and mortality. However, the mechanisms that govern this metastatic process in ovarian cancer cells remain poorly understood. In this study, we cultured ovarian cancer cell lines in adherent and nonadherent conditions in vitro and analyzed changes in mRNA and protein levels to identify mechanisms of tumor cell survival and proliferation in adherent and nonadherent cells. EGFR or ERBB2 upregulated ZEB1 in nonadherent cells, which caused resistance to cell death and increased tumor-initiating capacity. Conversely, Forkhead box M1 (FOXM1) was required for the induction of integrin ß1, integrin-α V, and integrin-α 5 for adhesion of cancer cells. FOXM1 also upregulated ZEB1, which could act as a feedback inhibitor of FOXM1, and caused the transition of adherent cells to nonadherent cells. Strikingly, the combinatorial treatment with lapatinib [dual kinase inhibitor of EGFR (ERBB1) and ERBB2] and thiostrepton (FOXM1 inhibitor) reduced growth and peritoneal spread of ovarian cancer cells more effectively than either single-agent treatment in vivo. In conclusion, these results demonstrate that FOXM1 and EGFR/ERBB2 pathways are key points of vulnerability for therapy to disrupt peritoneal spread and adhesion of ovarian cancer cells. SIGNIFICANCE: This study describes the mechanism exhibited by ovarian cancer cells required for adherent cell transition to nonadherent form during peritoneal spread and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5554/F1.large.jpg.


Asunto(s)
Receptores ErbB/metabolismo , Proteína Forkhead Box M1/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/secundario , Receptor ErbB-2/metabolismo , Transducción de Señal/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Femenino , Proteína Forkhead Box M1/antagonistas & inhibidores , Proteína Forkhead Box M1/genética , Técnicas de Silenciamiento del Gen , Humanos , Lapatinib/farmacología , Lapatinib/uso terapéutico , Ratones , Neoplasias Peritoneales/prevención & control , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/genética , Transducción de Señal/efectos de los fármacos , Tioestreptona/farmacología , Tioestreptona/uso terapéutico , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA