RESUMEN
Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are essential for chromatin localization and activity. Importantly, human disease-associated perturbations in ARID1B IDR sequence grammars disrupt cBAF function in cells. Together, these data identify IDR contributions to chromatin remodeling and explain how phase separation provides a mechanism through which both genomic localization and functional partner recruitment are achieved.
Asunto(s)
Ensamble y Desensamble de Cromatina , Complejos Multiproteicos , Proteínas Nucleares , Humanos , Cromatina , Proteínas de Unión al ADN/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismoRESUMEN
Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Asunto(s)
Infecciones por Coronavirus/genética , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Coronavirus/clasificación , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Células Vero , Internalización del VirusRESUMEN
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture. Here, we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome, generated using cryoelectron microscopy (cryo-EM), cross-linking mass spectrometry, and homology modeling. BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminal α-helix and the SMARCA4/2 C-terminal SnAc/post-SnAc regions, with disease-associated mutations in either causing attenuated chromatin remodeling activities. Further, we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes. Finally, we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex, identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation. Taken together, this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.
Asunto(s)
Enfermedad , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ensamble y Desensamble de Cromatina , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enfermedad/genética , Humanos , Mutación Missense/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Mammalian switch/sucrose non-fermentable (mSWI/SNF) complexes are multi-component machines that remodel chromatin architecture. Dissection of the subunit- and domain-specific contributions to complex activities is needed to advance mechanistic understanding. Here, we examine the molecular, structural, and genome-wide regulatory consequences of recurrent, single-residue mutations in the putative coiled-coil C-terminal domain (CTD) of the SMARCB1 (BAF47) subunit, which cause the intellectual disability disorder Coffin-Siris syndrome (CSS), and are recurrently found in cancers. We find that the SMARCB1 CTD contains a basic α helix that binds directly to the nucleosome acidic patch and that all CSS-associated mutations disrupt this binding. Furthermore, these mutations abrogate mSWI/SNF-mediated nucleosome remodeling activity and enhancer DNA accessibility without changes in genome-wide complex localization. Finally, heterozygous CSS-associated SMARCB1 mutations result in dominant gene regulatory and morphologic changes during iPSC-neuronal differentiation. These studies unmask an evolutionarily conserved structural role for the SMARCB1 CTD that is perturbed in human disease.
Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Mutación/genética , Nucleosomas/metabolismo , Proteína SMARCB1/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Elementos de Facilitación Genéticos/genética , Femenino , Genoma Humano , Células HEK293 , Células HeLa , Heterocigoto , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Proteína SMARCB1/química , Proteína SMARCB1/metabolismoRESUMEN
Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes are multi-subunit molecular machines that play vital roles in regulating genomic architecture and are frequently disrupted in human cancer and developmental disorders. To date, the modular organization and pathways of assembly of these chromatin regulators remain unknown, presenting a major barrier to structural and functional determination. Here, we elucidate the architecture and assembly pathway across three classes of mSWI/SNF complexes-canonical BRG1/BRM-associated factor (BAF), polybromo-associated BAF (PBAF), and newly defined ncBAF complexes-and define the requirement of each subunit for complex formation and stability. Using affinity purification of endogenous complexes from mammalian and Drosophila cells coupled with cross-linking mass spectrometry (CX-MS) and mutagenesis, we uncover three distinct and evolutionarily conserved modules, their organization, and the temporal incorporation of these modules into each complete mSWI/SNF complex class. Finally, we map human disease-associated mutations within subunits and modules, defining specific topological regions that are affected upon subunit perturbation.
Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Animales , Cromatina/química , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/genética , Drosophila/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Espectrometría de Masas , Mutagénesis , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Factores de Transcripción/análisis , Factores de Transcripción/genéticaRESUMEN
Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.
Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Alterations in transcriptional regulators can orchestrate oncogenic gene expression programs in cancer. Here, we show that the BRG1/BRM-associated factor (BAF) chromatin remodeling complex, which is mutated in over 20% of human tumors, interacts with EWSR1, a member of a family of proteins with prion-like domains (PrLD) that are frequent partners in oncogenic fusions with transcription factors. In Ewing sarcoma, we find that the BAF complex is recruited by the EWS-FLI1 fusion protein to tumor-specific enhancers and contributes to target gene activation. This process is a neomorphic property of EWS-FLI1 compared to wild-type FLI1 and depends on tyrosine residues that are necessary for phase transitions of the EWSR1 prion-like domain. Furthermore, fusion of short fragments of EWSR1 to FLI1 is sufficient to recapitulate BAF complex retargeting and EWS-FLI1 activities. Our studies thus demonstrate that the physical properties of prion-like domains can retarget critical chromatin regulatory complexes to establish and maintain oncogenic gene expression programs.
Asunto(s)
Proteínas de Unión a Calmodulina/química , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Sarcoma de Ewing/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Repeticiones de Microsatélite , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Priónicas/metabolismo , Dominios Proteicos , Sarcoma de Ewing/patologíaRESUMEN
The mammalian SWI/SNF (mSWI/SNF or BAF) family of chromatin remodeling complexes play critical roles in regulating DNA accessibility and gene expression. The three final-form subcomplexes-cBAF, PBAF, and ncBAF-are distinct in biochemical componentry, chromatin targeting, and roles in disease; however, the contributions of their constituent subunits to gene expression remain incompletely defined. Here, we performed Perturb-seq-based CRISPR-Cas9 knockout screens targeting mSWI/SNF subunits individually and in select combinations, followed by single-cell RNA-seq and SHARE-seq. We uncovered complex-, module-, and subunit-specific contributions to distinct regulatory networks and defined paralog subunit relationships and shifted subcomplex functions upon perturbations. Synergistic, intra-complex genetic interactions between subunits reveal functional redundancy and modularity. Importantly, single-cell subunit perturbation signatures mapped across bulk primary human tumor expression profiles both mirror and predict cBAF loss-of-function status in cancer. Our findings highlight the utility of Perturb-seq to dissect disease-relevant gene regulatory impacts of heterogeneous, multi-component master regulatory complexes.
Asunto(s)
Ensamble y Desensamble de Cromatina , Neoplasias , Animales , Humanos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Mamíferos/metabolismoRESUMEN
Highly coordinated changes in gene expression underlie T cell activation and exhaustion. However, the mechanisms by which such programs are regulated and how these may be targeted for therapeutic benefit remain poorly understood. Here, we comprehensively profile the genomic occupancy of mSWI/SNF chromatin remodeling complexes throughout acute and chronic T cell stimulation, finding that stepwise changes in localization over transcription factor binding sites direct site-specific chromatin accessibility and gene activation leading to distinct phenotypes. Notably, perturbation of mSWI/SNF complexes using genetic and clinically relevant chemical strategies enhances the persistence of T cells with attenuated exhaustion hallmarks and increased memory features in vitro and in vivo. Finally, pharmacologic mSWI/SNF inhibition improves CAR-T expansion and results in improved anti-tumor control in vivo. These findings reveal the central role of mSWI/SNF complexes in the coordination of T cell activation and exhaustion and nominate small-molecule-based strategies for the improvement of current immunotherapy protocols.
Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Cromatina/genética , Activación TranscripcionalRESUMEN
Mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes play critical roles in governing genomic architecture and gene expression and are frequently perturbed in human cancers. Transcription factors (TFs), including fusion oncoproteins, can bind to BAF complex surfaces to direct chromatin targeting and accessibility, often activating oncogenic gene loci. Here, we demonstrate that the FUS::DDIT3 fusion oncoprotein hallmark to myxoid liposarcoma (MLPS) inhibits BAF complex-mediated remodeling of adipogenic enhancer sites via sequestration of the adipogenic TF, CEBPB, from the genome. In mesenchymal stem cells, small-molecule inhibition of BAF complex ATPase activity attenuates adipogenesis via failure of BAF-mediated DNA accessibility and gene activation at CEBPB target sites. BAF chromatin occupancy and gene expression profiles of FUS::DDIT3-expressing cell lines and primary tumors exhibit similarity to SMARCB1-deficient tumor types. These data present a mechanism by which a fusion oncoprotein generates a BAF complex loss-of-function phenotype, independent of deleterious subunit mutations.
Asunto(s)
Liposarcoma Mixoide , Animales , Línea Celular Tumoral , Cromatina/genética , Liposarcoma Mixoide/genética , Liposarcoma Mixoide/metabolismo , Liposarcoma Mixoide/patología , Mamíferos/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Recent exon sequencing studies have revealed that over 20% of human tumors have mutations in subunits of mSWI/SNF (BAF) complexes. To investigate the underlying mechanism, we studied human synovial sarcoma (SS), in which transformation results from the translocation of exactly 78 amino acids of SSX to the SS18 subunit of BAF complexes. We demonstrate that the SS18-SSX fusion protein competes for assembly with wild-type SS18, forming an altered complex lacking the tumor suppressor BAF47 (hSNF5). The altered complex binds the Sox2 locus and reverses polycomb-mediated repression, resulting in Sox2 activation. Sox2 is uniformly expressed in SS tumors and is essential for proliferation. Increasing the concentration of wild-type SS18 leads to reassembly of wild-type complexes retargeted away from the Sox2 locus, polycomb-mediated repression of Sox2, and cessation of proliferation. This mechanism of transformation depends on only two amino acids of SSX, providing a potential foundation for therapeutic intervention.
Asunto(s)
Proteínas de Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Sarcoma Sinovial/metabolismo , Sarcoma Sinovial/patología , Proliferación Celular , Transformación Celular Neoplásica , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Represoras/química , Proteína SMARCB1 , Factores de Transcripción SOXB1/genética , Sarcoma Sinovial/genética , Factores de Transcripción/metabolismoRESUMEN
BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.
Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos NOD , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.
Asunto(s)
COVID-19 , Internalización del Virus , Animales , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/genética , COVID-19/metabolismo , Dipeptidil Peptidasa 4 , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Quinasas DyrKRESUMEN
Chromosomal rearrangements resulting in the fusion of TMPRSS2, an androgen-regulated gene, and the ETS family transcription factor ERG occur in over half of prostate cancers. However, the mechanism by which ERG promotes oncogenic gene expression and proliferation remains incompletely understood. Here, we identify a binding interaction between ERG and the mammalian SWI/SNF (BAF) ATP-dependent chromatin remodeling complex, which is conserved among other oncogenic ETS factors, including ETV1, ETV4, and ETV5. We find that ERG drives genome-wide retargeting of BAF complexes in a manner dependent on binding of ERG to the ETS DNA motif. Moreover, ERG requires intact BAF complexes for chromatin occupancy and BAF complex ATPase activity for target gene regulation. In a prostate organoid model, BAF complexes are required for ERG-mediated basal-to-luminal transition, a hallmark of ERG activity in prostate cancer. These observations suggest a fundamental interdependence between ETS transcription factors and BAF chromatin remodeling complexes in cancer.
Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Serina Endopeptidasas/genética , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular , Cromatina/química , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Organoides/metabolismo , Organoides/patología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Serina Endopeptidasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismoRESUMEN
SF3B1 is the most commonly mutated RNA splicing factor in cancer1-4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here we integrated pan-cancer splicing analyses with a positive-enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, which is a core component of the recently described non-canonical BAF chromatin-remodelling complex that also contains GLTSCR1 and GLTSCR1L5-7. Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9 and thereby induces the inclusion of a poison exon that is derived from an endogenous retroviral element and subsequent degradation of BRD9 mRNA. Depletion of BRD9 causes the loss of non-canonical BAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumour suppressor in uveal melanoma, such that correcting mis-splicing of BRD9 in SF3B1-mutant cells using antisense oligonucleotides or CRISPR-directed mutagenesis suppresses tumour growth. Our results implicate the disruption of non-canonical BAF in the diverse cancer types that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias/genética , Empalme del ARN , Empalmosomas/metabolismo , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/patología , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Empalmosomas/genética , Factores de Transcripción/metabolismoRESUMEN
Therapies that boost the antitumor immune response have shown a great deal of success. Although most of these therapies have focused on enhancing T cell functions, there is a growing interest in developing therapies that can target other immune cell subsets. Like T cells, natural killer (NK) cells are cytotoxic effector cells that play a key role in the antitumor response. To advance the development of NK-based therapies, we developed a functional screen to rapidly identify antibodies that can activate NK cells. We displayed antibodies on a mammalian target cell line and probed their ability to stimulate NK cell-mediated cytotoxicity. From this screen, we identified five antibodies that bound with high affinity to NK cells and stimulated NK cell-mediated cytotoxicity and interferon-γ (IFN-γ) secretion. We demonstrate that these antibodies can be further developed into bispecific antibodies to redirect NK cell-mediated cytotoxicity toward CD20+ B cell lymphoma cells and HER2+ breast cancer cells. While antibodies to two of the receptors, CD16 and NCR1, have previously been targeted as bispecific antibodies to redirect NK cell-mediated cytotoxicity, we demonstrate that bispecific antibodies targeting NCR3 can also potently activate NK cells. These results show that this screen can be used to directly identify antibodies that can enhance antitumor immune responses.
Asunto(s)
Anticuerpos/fisiología , Citotoxicidad Celular Dependiente de Anticuerpos/fisiología , Células Asesinas Naturales/fisiología , Afinidad de Anticuerpos , Neoplasias de la Mama , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI , Regulación de la Expresión Génica/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/metabolismo , Linfoma de Células B/tratamiento farmacológico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Superficie Celular , Receptores de IgG , Reproducibilidad de los Resultados , Rituximab/farmacologíaRESUMEN
Small molecule-based targeting of chromatin regulatory factors has emerged as a promising therapeutic strategy in recent years. The development and ongoing clinical evaluation of novel agents targeting a range of chromatin regulatory processes, including DNA or histone modifiers, histone readers, and chromatin regulatory protein complexes, has inspired the field to identify and act upon the full compendium of therapeutic opportunities. Emerging studies highlight the frequent involvement of altered mammalian Switch/Sucrose-Nonfermentable (mSWI/SNF) chromatin-remodeling complexes (also called BAF complexes) in both human cancer and neurological disorders, suggesting new mechanisms and accompanying routes toward therapeutic intervention. Here, we review current approaches for direct targeting of mSWI/SNF complex structure and function and discuss settings in which aberrant mSWI/SNF biology is implicated in oncology and other diseases.
Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Neoplasias/terapia , Factores de Transcripción/metabolismo , Animales , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Humanos , Neoplasias/genética , Factores de Transcripción/química , Factores de Transcripción/genéticaRESUMEN
Nucleosomes, the structural building blocks of chromatin, possess 2-fold pseudo symmetry which can be broken through differential modification or removal of one copy of a pair of sister histones. The resultant asymmetric nucleosomes and hexasomes have been implicated in gene regulation, yet the use of these noncanonical substrates in chromatin biochemistry is limited, owing to the lack of efficient methods for their preparation. Here, we report a strategy that allows the orientation of these asymmetric species to be tightly controlled relative to the underlying DNA sequence. Our approach is based on the use of truncated DNA templates to assemble oriented hexasomes followed by DNA ligation and, in the case of asymmetric nucleosomes, addition of the missing heterotypic histones. We show that this approach is compatible with multiple nucleosome positioning sequences, allowing the generation of desymmetrized mononucleosomes and oligonucleosomes with varied DNA overhangs and heterotypic histone H2A/H2B dimer compositions. Using this technology, we examine the functional consequences of asymmetry on BRG1/BRM associated factor (BAF) complex-mediated chromatin remodeling. Our results indicate that cancer-associated histone mutations can reprogram the inherent activity of BAF chromatin remodeling to induce aberrant chromatin structure.
Asunto(s)
Cromatina/química , ADN/química , Nucleosomas/química , Histonas/química , Modelos Moleculares , Conformación ProteicaRESUMEN
Soft-tissue sarcomas are increasingly characterized and subclassified by genetic abnormalities that represent underlying drivers of their pathology. Hallmark tumor suppressor gene mutations and pathognomonic gene fusions collectively account for approximately one-third of all sarcomas. These genetic abnormalities most often result in global transcriptional misregulation via disruption of protein regulatory complexes which govern chromatin architecture. Specifically, alterations to mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes and polycomb repressive complexes cause disease-specific changes in chromatin architecture and gene expression across a number of sarcoma subtypes. Understanding the functions of chromatin regulatory complexes and the mechanisms underpinning their roles in oncogenesis will be required for the design and development of new therapeutic strategies in sarcomas. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas del Grupo Polycomb/genética , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Factores de Transcripción/genética , Animales , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Proteínas del Grupo Polycomb/metabolismo , Pronóstico , Sarcoma/metabolismo , Sarcoma/patología , Sarcoma/terapia , Neoplasias de los Tejidos Blandos/metabolismo , Neoplasias de los Tejidos Blandos/patología , Neoplasias de los Tejidos Blandos/terapia , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
The dynamic structure of histones and DNA, also known as chromatin, is regulated by two classes of enzymes: those that mediate covalent modifications on either histone proteins or DNA and those that use the energy generated by ATP hydrolysis to mechanically alter chromatic structure. Both classes of enzymes are often found in large protein complexes. In this review, we describe two such complexes: polycomb repressive complex 2 (PRC2), with the protein methyltransferase EZH2 as its catalytic subunit, and the ATP-dependent chromatin remodeler switch/sucrose non-fermentable (SWI/SNF). EZH2 catalyzes the methylation of lysine 27 on histone H3, a covalent chromatin modification that is associated with repressed heterochromatin. The catalytic activity of SWI/SNF, in contrast, leads to a state of open chromatin associated with active transcription. In this review, we discuss the biochemical properties of both complexes, outline the principles of their regulation, and describe their opposing roles in normal development, which can be perturbed in disease settings such as cancer.