Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074765

RESUMEN

Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.


Asunto(s)
Genitales Masculinos/metabolismo , Diferenciación Sexual , Acetilación , Andrógenos , Animales , Sistemas CRISPR-Cas , Femenino , Regulación de la Expresión Génica , Histonas/metabolismo , Factor de Transcripción MafB , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Receptores Androgénicos , Factores de Transcripción/metabolismo
2.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613635

RESUMEN

Nuclear receptor subfamily 5 group A member 1 (NR5A1) is expressed in the pituitary gonadotrope and regulates their differentiation. Although several regulatory regions were implicated in Nr5a1 gene expression in the pituitary gland, none of these regions have been verified using mouse models. Furthermore, the molecular functions of NR5A1 in the pituitary gonadotrope have not been fully elucidated. In the present study, we generated mice lacking the pituitary enhancer located in the 6th intron of the Nr5a1 gene. These mice showed pituitary gland-specific disappearance of NR5A1, confirming the functional importance of the enhancer. Enhancer-deleted male mice demonstrated no defects at fetal stages. Meanwhile, androgen production decreased markedly in adult, and postnatal development of reproductive organs, such as the seminal vesicle, prostate, and penis was severely impaired. We further performed transcriptomic analyses of the whole pituitary gland of the enhancer-deleted mice and controls, as well as gonadotropes isolated from Ad4BP-BAC-EGFP mice. These analyses identified several genes showing gonadotrope-specific, NR5A1-dependent expressions, such as Spp1, Tgfbr3l, Grem1, and Nr0b2. These factors are thought to function downstream of NR5A1 and play important roles in reproductive organ development through regulation of pituitary gonadotrope functions.


Asunto(s)
Gonadotrofos , Hipófisis , Secuencias Reguladoras de Ácidos Nucleicos , Factor Esteroidogénico 1 , Animales , Masculino , Ratones , Gonadotrofos/metabolismo , Intrones/genética , Hipófisis/metabolismo , Factor Esteroidogénico 1/genética
3.
Reprod Med Biol ; 21(1): e12472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35765371

RESUMEN

Purpose: Penile research is expected to reveal new targets for treatment and prevention of the complex mechanisms of its disorder including erectile dysfunction (ED). Thus, analyses of the molecular processes of penile ED and continuous erection as priapism are essential issues of reproductive medicine. Methods: By performing mouse N-ethyl-N-nitrosourea mutagenesis and exome sequencing, we established a novel mouse line displaying protruded genitalia phenotype (PGP; priapism-like phenotype) and identified a novel Pitpna gene mutation for PGP. Extensive histological analyses on the Pitpna mutant and intracavernous pressure measurement (ICP) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS)/MS analyses were performed. Results: We evaluated the role of phospholipids during erection for the first time and showed the mutants of inducible phenotypes of priapism. Moreover, quantitative analysis using LC-ESI/MS/MS revealed that the level of phosphatidylinositol (PI) was significantly lower in the mutant penile samples. These results imply that PI may contribute to penile erection by PITPα. Conclusions: Our findings suggest that the current mutant is a mouse model for priapism and abnormalities in PI signaling pathways through PITPα may lead to priapism providing an attractive novel therapeutic target in its treatment.

4.
Biol Proced Online ; 23(1): 21, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758723

RESUMEN

BACKGROUND: Because of the high frequency of chronic edema formation in the current "aged" society, analyses and detailed observation of post-surgical edema are getting more required. Post-surgical examination of the dynamic vasculature including L.V. (Lymphatic Vasculature) to monitor edema formation has not been efficiently performed. Hence, procedures for investigating such vasculature are essential. By inserting transparent sheet into the cutaneous layer of mouse tails as a novel surgery model (the Tail Edema by Silicone sheet mediated Transparency protocol; TEST), the novel procedures are introduced and analyzed by series of histological analyses including video-based L.V. observation and 3D histological reconstruction of vasculatures in mouse tails. RESULTS: The dynamic generation of post-surgical main and fine (neo) L.V. connective structure during the edematous recovery process was visualized by series of studies with a novel surgery model. Snapshot images taken from live binocular image recording for TEST samples suggested the presence of main and elongating fine (neo) L.V. structure. After the ligation of L.V., the enlargement of main L.V. was confirmed. In the case of light sheet fluorescence microscopy (LSFM) observation, such L.V. connections were also suggested by using transparent 3D samples. Finally, the generation of neo blood vessels particularly in the region adjacent to the silicone sheet and the operated boundary region was suggested in 3D reconstruction images. However, direct detection of elongating fine (neo) L.V. was not suitable for analysis by such LSFM and 3D reconstruction procedures. Thus, such methods utilizing fixed tissues are appropriate for general observation for the operated region including of L.V. CONCLUSIONS: The current surgical procedures and analysis on the post-surgical status are the first case to observe vasculatures in vivo with a transparent sheet. Systematic analyses including the FITC-dextran mediated snap shot images observation suggest the elongation of fine (neo) lymphatic vasculature. Post-surgical analyses including LSFM and 3D histological structural reconstruction, are suitable to reveal the fixed structures of blood and lymphatic vessels formation.

5.
Reprod Med Biol ; 20(2): 199-207, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33850453

RESUMEN

PURPOSE: Erectile dysfunction (ED) is one of the increasing diseases with aging society. The basis of ED derived from local penile abnormality is poorly understood because of the complex three-dimensional (3D) distribution of sinusoids in corpus cavernosum (CC). Understanding the 3D histological structure of penis is thus necessary. Analyses on the status of regulatory signals for such abnormality are also performed. METHODS: To analyze the 3D structure of sinusoid, 3D reconstruction from serial sections of murine CC were performed. Histological analyses between young (2 months old) and aged (14 months old) CC were performed. As for chondrogenic signaling status of aged CC, SOX9 and RBPJK staining was examined. RESULTS: Sinusoids prominently developed in the outer regions of CC adjacent to tunica albuginea. Aged CC samples contained ectopic chondrocytes in such regions. Associating with the appearance of chondrocytes, the expression of SOX9, chondrogenic regulator, was upregulated. The expression of RBPJK, one of the Notch signal regulators, was downregulated in the aged CC. CONCLUSIONS: Prominent sinusoids distribute in the outer region of CC which may possess important roles for erection. A possibility of ectopic chondrogenesis induced by alteration of SOX9/Notch signaling with aging is indicated.

6.
Differentiation ; 110: 29-35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31590136

RESUMEN

Development of external genitalia (ExG) has been a topic of long mystery in the field of organogenesis research. Early stage male and female of mouse embryos develop a common genital tubercle (GT) in the perineum whose outgrowth extends distally from the posterior cloacal regions. Concomitant with GT outgrowth, the cloaca is divided into urogenital sinus and anorectum by urorectal septum (URS) internally. The outgrowth of the GT is associated with the formation of endodermal epithelial urethral plate (UP) attached to the ventral epidermis of the GT. Such a common developmental phase is observed until around embryonic day 15.5 (E15.5) morphologically in mouse embryogenesis. Various growth factor genes, such as Fibroblast growth factor (Fgf) and Wnt genes are expressed and function during GT formation. Since the discovery of key growth factor signals and several regulatory molecules, elucidation of their functions has been achieved utilizing mouse developmental models, conditional gene knockout mouse and in vitro culture. Analyses on the phenotypes of such mouse models have revealed that several growth factor families play fundamental roles in ExG organogenesis based on the epithelial-mesenchymal interaction (EMI). More recently, EMI between developing urethral epithelia and its bilateral mesenchyme of later stages is also reported during subsequent stage of androgen-dependent male-type urethral formation in the mouse embryo. Mafb, belonging to AP-1 family and a key androgen-responsive mesenchymal gene, is identified and starts to be expressed around E14.5 when masculinization of the urethra is initiated. Mesenchymal cell condensation and migration, which are regulated by nonmuscle myosin, are shown to be essential process for masculinization. Hence, studies on EMI at various embryonic stages are important not only for early but also for subsequent masculinization of the urethra. In this review, a dynamic mode of EMI for both early and late phases of ExG development is discussed.


Asunto(s)
Andrógenos/metabolismo , Endodermo/metabolismo , Genitales/crecimiento & desarrollo , Mesodermo/metabolismo , Organogénesis/genética , Animales , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino
7.
Exp Anim ; 71(4): 451-459, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35613877

RESUMEN

The development of embryonic external genitalia (eExG) into characteristic male structures, such as urethra and penile erectile tissues, depends on 5α-dihydrotestosterone (DHT). Although the corpus cavernosum (CC) is well known as essential for erectile function in adults, its developmental process and its dependency on DHT have been unknown. To reveal the dimorphic formation of the murine CC from the embryonic stage, we first analyzed the production of the protein vascular endothelial growth factor receptor-2 (FLK1) via its expression (hereinafter referred as "expression of FLK1") and the expression of alpha-smooth muscle actin (ACTA2) and collagen type 1 (COL1A1) in developing external genitalia. The 5-α reductase type 2 encoded by the SRD5A2 gene has been suggested to be a crucial enzyme for male sexual differentiation, as it converts testosterone (T) into DHT in the local urogenital organs. In fact, SRD5A2 mutation results in decreased synthesis of DHT, which leads to various degrees of masculinized human external genitalia (ExG). We further investigated the expression profile of SRD5A2 during the formation of the murine CC. We observed that SRD5A2 was expressed in smooth muscle of the CC. To determine the role of SRD5A2 in CC formation, we analyzed the formation of erectile tissue in the male Srd5a2 KO mice and measured the levels of androgens in the ExG by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Intriguingly, there were no obvious defects in the CCs of male Srd5a2 KO mice, possibly due to increased T levels. The current study suggests possible redundant functions of androgens in CC development.


Asunto(s)
Dihidrotestosterona , Testosterona , Animales , Humanos , Masculino , Ratones , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Cromatografía Liquida , Dihidrotestosterona/metabolismo , Genitales/fisiología , Proteínas de la Membrana/genética , Espectrometría de Masas en Tándem , Testosterona/fisiología , Ratones Noqueados
8.
Congenit Anom (Kyoto) ; 62(3): 123-133, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35318743

RESUMEN

The murine penile erectile tissues including corpus cavernosum (CC) are composed of blood vessels, smooth muscle, and connective tissue, showing marked sexual differences. It has been known that the androgens are required for sexually dimorphic organogenesis. It is however unknown about the features of androgen signaling during mouse CC development. It is also unclear how androgen-driven downstream factors are involved such processes. In the current study, we analyzed the onset of sexually dimorphic CC formation based on histological analyses, the dynamics of androgen receptor (AR) expression, and regulation of cell proliferation. Of note, we identified Dickkopf-related protein 2 (Dkk2), an inhibitor of ß-catenin signaling, was predominantly expressed in female CC compared with male. Furthermore, administration of androgens resulted in activation of ß-catenin signaling. We have found the Sox9 gene, one of the essential markers for chondrocyte, was specifically expressed in the developing CC. Hence, we utilized CC-specific, Sox9 CreERT2 , ß-catenin conditional mutant mice. Such mutant mice showed defective cell proliferation. Furthermore, introduction of activated form of ß-catenin mutation (gain of function mutation for Wnt/ß-catenin signaling) in CC induced augmented cell proliferation. Altogether, we revealed androgen-Wnt/ß-catenin signal dependent cell proliferation was essential for sexually dimorphic CC formation. These findings open new avenues for understanding developmental mechanisms of androgen-dependent cell proliferation during sexual differentiation.


Asunto(s)
Andrógenos , beta Catenina , Andrógenos/genética , Andrógenos/farmacología , Animales , Proliferación Celular , Femenino , Masculino , Ratones , Pene , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA