Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Epilepsia ; 55(9): 1374-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24965103

RESUMEN

OBJECTIVE: To compare manual and automated preoperative and postoperative hippocampal volume measurements in patients with intractable epilepsy. METHODS: We studied 34 patients referred to the Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH) for evaluation of intractable epilepsy and 21 normal volunteers who received 1.5 or 3 T GE Signa magnetic resonance imaging (MRI) scans. Hippocampal volumes were traced manually on each slice and assembled into three-dimensional volumes by investigators who were blinded to other data. Automated volumetric measurements were obtained using FreeSurfer. Statistical analysis was performed with GraphPad Prism. RESULTS: Automated hippocampal volumes were larger than manual volumes in both patients and normal volunteers (p < 0.05). Right to left hemisphere hippocampal ratio and percent of hippocampus resected did not differ significantly by segmentation method. It was not possible to obtain accurate total resection volumes with the automated method. SIGNIFICANCE: Values such as side-to-side ratio and percent resected may be more directly translatable between manual and automated methods than absolute measures of volume. Accurate determination of resection volumes is important for studies of the effects of surgery on both seizure control and postoperative neuropsychological deficits. Our preliminary data suggest that FreeSurfer may provide an accurate and simple method for quantitating hippocampal resections. However, it may be less valuable for large or extratemporal resections, or when distortions of normal anatomy are present. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Asunto(s)
Epilepsia/patología , Epilepsia/cirugía , Hipocampo/patología , Interpretación de Imagen Asistida por Computador , Resultado del Tratamiento , Adulto , Análisis de Varianza , Electroencefalografía , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Estados Unidos
2.
J Neurosci ; 32(19): 6525-41, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22573675

RESUMEN

Mutations in the synaptic scaffolding protein gene SHANK3 are strongly implicated in autism and Phelan-McDermid 22q13 deletion syndrome. The precise location of the mutation within the Shank3 gene is key to its phenotypic outcomes. Here, we report the physiological and behavioral consequences of null and heterozygous mutations in the ankyrin repeat domain in Shank3 mice. Both homozygous and heterozygous mice showed reduced glutamatergic transmission and long-term potentiation in the hippocampus with more severe deficits detected in the homozygous mice. Three independent cohorts were evaluated for magnitude and replicability of behavioral endophenotypes relevant to autism and Phelan-McDermid syndrome. Mild social impairments were detected, primarily in juveniles during reciprocal interactions, while all genotypes displayed normal adult sociability on the three-chambered task. Impaired novel object recognition and rotarod performance were consistent across cohorts of null mutants. Repetitive self-grooming, reduced ultrasonic vocalizations, and deficits in reversal of water maze learning were detected only in some cohorts, emphasizing the importance of replication analyses. These results demonstrate the exquisite specificity of deletions in discrete domains within the Shank3 gene in determining severity of symptoms.


Asunto(s)
Trastorno Autístico/genética , Proteínas Portadoras/genética , Potenciales Postsinápticos Excitadores/genética , Mutación/genética , Inhibición Neural/genética , Fenotipo , Transmisión Sináptica/genética , Factores de Edad , Animales , Trastorno Autístico/psicología , Femenino , Tamización de Portadores Genéticos , Ácido Glutámico/genética , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso
3.
Cell Rep ; 7(4): 1077-1092, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24794428

RESUMEN

A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11(+/-)). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2(+)) and fewer dopamine-sensitive (Drd1(+)) neurons in deep layers of cortex. Electrophysiological recordings of Drd2(+) MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11(+/-) mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11(+/-) mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.


Asunto(s)
Trastorno Autístico/genética , Ganglios Basales/anomalías , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Modelos Animales de Enfermedad , Discapacidad Intelectual/genética , Trastornos Mentales/genética , Animales , Ganglios Basales/patología , Cromosomas Humanos Par 16/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
PLoS One ; 8(12): e81401, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324691

RESUMEN

Neurosurgical therapeutic interventions include components that are presumed to be therapeutically inert, such as craniotomy and electrode implantation. Because these procedures may themselves exert neuroactive actions, with anecdotal evidence suggesting that craniotomy and electrode placement may have a particularly significant impact on epileptic seizures, the importance of their inclusion in sham control groups has become more compelling. Here we set out to test the hypothesis that craniotomy alone is sufficient to alter experimental seizures in rats. We tested adult male rats for seizures evoked by pentylenetetrazole (70 mg/kg) between 3 and 20 days following placement of bilateral craniotomies (either 2.5 or 3.5 mm in diameter) in the parietal bone of the skull, without penetrating the dura. Control (sham-operated) animals underwent anesthesia and surgery without craniotomy. We found that craniotomy significantly decreased the severity of experimental seizures on postoperative days 3, 6, and 10; this effect was dependent on the size of craniotomy. Animals with craniotomies returned to control seizure severity by 20 days post-craniotomy. These data support the hypothesis that damage to the skull is sufficient to cause a significant alteration in seizure susceptibility over an extended postoperative period, and indicate that this damage should not be considered neurologically inert.


Asunto(s)
Craneotomía/efectos adversos , Convulsiones/inducido químicamente , Convulsiones/etiología , Animales , Masculino , Pentilenotetrazol , Ratas , Ratas Sprague-Dawley , Cráneo/cirugía
5.
Front Behav Neurosci ; 7: 159, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312027

RESUMEN

Adult male mice emit large number of complex ultrasonic vocalizations (USVs) when interacting with adult females. Call numbers and call categories differ greatly among inbred mouse strains. Little is known about USV emissions when the social partner departs. To investigate whether call repertoires and call rates are different when the male is interacting with a female and after the removal of the female, we designed a novel male-female social interaction test in which vocalizations were recorded across three phases. During phase 1, the male subject freely interacts with an unfamiliar estrus female mouse in a clean cage for 5 min. During phase 2, the female is removed while the male remains in the cage for 3 min. During phase 3, the same female is returned to the cage to rejoin the male subject mouse for 3 min. C57BL/6J (B6), FVB.129P2-Pde6b(+) Tyr(c-ch)/Ant (FVB), and BTBR T+ tf/J (BTBR) male subject mice were tested in this paradigm. All three strains emitted USVs during their initial interaction with the female partner. When the female was reintroduced in phase 3, numbers of USVs were similar to the initial introductory phase 1. Strain comparisons indicated fewer calls in pairs of BTBR males and stimulus females than in pairs of B6 males and stimulus females and pairs of FVB males and stimulus females. In the absence of the female, all FVB males vocalized, while only one third of B6 males and one third of BTBR males vocalized. In all three strains, changes in call category repertoires were detected after the female was removed. Call categories reverted to the phase 1 pattern when the female was returned in phase 3. Present findings indicate that males of commonly used inbred strains emit USVs when a partner female leaves the testing arena, suggesting that removing a salient social stimulus may be a unique approach to elicit USVs from mice. Our three-phase paradigm may also be useful for studying attention to social cues, and qualitative differences in vocalizations when a social partner is present vs. suddenly absent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA