Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
mBio ; 15(8): e0107924, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38995021

RESUMEN

Surveillance and sustained control of visceral leishmaniasis (VL) require reliable serodiagnostic tools. rK39, the gold standard antigen for VL diagnosis, is limited by its documented poor sensitivity in certain endemic regions, such as East Africa, and by the longevity of its antibodies, making it difficult to distinguish active from cured infections. In a recent publication in mBio, Roberts et al. (A. J. Roberts, H.B. Ong, S. Clare, C. Brandt, et al., mBio 15:e00859-24, 2024, https://doi.org/10.1128/mbio.00859-24) identified new immunogenic Leishmania candidates in dogs and humans. In dogs, combined antigens LdBPK_290790.1 + LdBPK_362700.1 (D4 +D46) distinguished symptomatic from asymptomatic infections. For humans, LdBPK_323600.1 (D36) antigen produced short-lived antibodies and performed well in patient cohorts from Bangladesh and Ethiopia, but not Kenya. This study adds promising new candidates to our serodiagnostic toolbox but highlights the need for more antigen discovery studies that may have to be focused on regional performance.


Asunto(s)
Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Enfermedades de los Perros , Leishmaniasis Visceral , Pruebas Serológicas , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/veterinaria , Leishmaniasis Visceral/inmunología , Perros , Animales , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/genética , Pruebas Serológicas/métodos , Humanos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/inmunología , Anticuerpos Antiprotozoarios/sangre , Sensibilidad y Especificidad , Etiopía
2.
Res Sq ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39070615

RESUMEN

Phlebotomus argentipes is the established vector of leishmaniasis in the Indian sub-continent. Antibodies to sand fly salivary antigens are biomarkers for vector-host exposure in leishmaniasis-endemic regions. Ph. argentipes transmits Leishmania donovani in Sri Lanka, primarily causing cutaneous leishmaniasis (CL). Our study compared the performance of salivary gland homogenate (SGH) from a lab-reared local strain of Ph. argentipes females to a composite recombinant salivary biomarker (rPagSP02 + rPagSP06) in a CL-endemic population. Sera from 546 healthy individuals, 30 CL patients, and 15 non-endemic individuals were collected. Western blot analysis of Ph. argentipes SGH identified immunogenic bands between 15 kDa and 67 kDa, with bands of predicted molecular weight õf 15 kDa (SP02) and ~28-30 kDa (SP06) as the major antibody targets. Indirect ELISAs using SGH or rPagSP02 + rPagSP06 antigens showed high sensitivity (96.7%) and specificity (100%), detecting comparable seropositivity in endemic populations. rPagSP02 + rPagSP06 exhibited enhanced discriminatory ability, supported by a strong positive correlation (r = 0.869) with SGH. Our findings indicate that the composite rPagSP02 + rPagSP06 salivary biomarker effectively identifies Ph. argentipes exposure in individuals living in Sri Lanka, showing promising potential for use in surveillance. These findings should be further validated to confirm the epidemiological applications in leishmaniasis-endemic regions.

3.
Parasit Vectors ; 17(1): 11, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183132

RESUMEN

BACKGROUND: Vector sand fly colonies are a critical component of studies aimed at improving the understanding of the neglected tropical disease leishmaniasis and alleviating its global impact. However, among laboratory-colonized arthropod vectors of infectious diseases, the labor-intensive nature of sand fly rearing coupled with the low number of colonies worldwide has generally discouraged the widespread use of sand flies in laboratory settings. Among the different factors associated with the low productivity of sand fly colonies, mite infestations are a significant factor. Sand fly colonies are prone to infestation by mites, and the physical interactions between sand flies and mites and metabolites have a negative impact on sand fly larval development. METHODS: Mites were collected from sand fly larval rearing pots and morphologically identified using taxonomic keys. Upon identification, they were photographed with a scanning electron microscope. Several mite control measures were adopted in two different laboratories, one at the Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases-National Institutes of Health (Rockville, MD, USA), and the other at the University of Calgary (Calgary, AB, Canada). RESULTS: The mite species associated with sand fly colonies in the two laboratories were morphologically identified as Tyrophagus sp. and Stratiolaelaps scimitus. While complete eradication of mites in sand fly colonies is considered unrealistic, drastically reducing their population has been associated with higher sand fly productivity. CONCLUSIONS: We report a case of detrimental interaction between sand flies and Tyrophagus sp. and S. scimitus in a closed laboratory sand fly colony, discuss their impact on sand fly production and provide guidelines for limiting the mite population size in a closed laboratory colony leading to improved sand fly yields.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Phlebotomus , Psychodidae , Enfermedades Transmitidas por Vectores , Estados Unidos , Animales , Laboratorios
4.
Front Immunol ; 15: 1335307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633260

RESUMEN

Introduction: Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods: To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results: A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion: Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.


Asunto(s)
Mordeduras y Picaduras de Insectos , Phlebotomus , Animales , Humanos , Phlebotomus/parasitología , Leucocitos Mononucleares , Inmunidad Celular , Antígenos , Inmunoglobulina G , Proteínas y Péptidos Salivales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA