Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Plant Biol ; 24(1): 733, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085764

RESUMEN

BACKGROUND: Improving the quality and shelf life of groundnut oil is one of the foremost objectives of groundnut breeding programmes. This can be achieved by marker-assisted introgression, a technique that efficiently and precisely enables breeders to develop plants with enhanced qualities. This study focused on improving the oleic acid content of an elite groundnut variety, TMV 7, by introgressing a recessive mutation responsible for the increase in oleic acid from ICG 15419. Hybridization was performed between the donor and recurrent parents to develop the F1, BC1F1, BC2F1 and BC2F2 populations. Introgressed lines with increased oleic acid in the genetic background of TMV 7 were identified using allele-specific marker, F435-F, F435SUB-R and a set of SSR markers were employed to recover the genome of the recurrent parent. RESULTS: With two backcrosses, a total of ten homozygous plants in the BC2F2 population were identified with oleic acid content ranging from 54.23 to 57.72% causing an increase of 36% over the recurrent parent. Among the ten lines, the line IL-23 exhibited the highest level of recurrent parent genome recovery of 91.12%. CONCLUSIONS: The phenotypic evaluation of 10 homozygous introgressed lines indicated fewer differences for all other traits under study compared to the recurrent parent, except for oleic acid and linoleic acid content confirming the genetic background of the recurrent parent. The identified lines will be subjected to multilocation trials before their commercial release.


Asunto(s)
Arachis , Ácido Oléico , Fitomejoramiento , Ácido Oléico/metabolismo , Arachis/genética , Arachis/metabolismo , Fitomejoramiento/métodos , Marcadores Genéticos , Introgresión Genética , Aceites de Plantas/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928029

RESUMEN

Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. 'Derash' was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop.


Asunto(s)
Brassica , Ácidos Erucicos , Ésteres , Ingeniería Metabólica , Plantas Modificadas Genéticamente , Semillas , Ceras , Ácidos Erucicos/metabolismo , Ingeniería Metabólica/métodos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ceras/metabolismo , Ésteres/metabolismo , Semillas/genética , Semillas/metabolismo , Brassica/genética , Brassica/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Curr Issues Mol Biol ; 45(11): 8894-8906, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37998735

RESUMEN

Plant metabolomics is a rapidly advancing field of plant sciences and systems biology. It involves comprehensive analyses of small molecules (metabolites) in plant tissues and cells. These metabolites include a wide range of compounds, such as sugars, amino acids, organic acids, secondary metabolites (e.g., alkaloids and flavonoids), lipids, and more. Metabolomics allows an understanding of the functional roles of specific metabolites in plants' physiology, development, and responses to biotic and abiotic stresses. It can lead to the identification of metabolites linked with specific traits or functions. Plant metabolic networks and pathways can be better understood with the help of metabolomics. Researchers can determine how plants react to environmental cues or genetic modifications by examining how metabolite profiles change under various crop stages. Metabolomics plays a major role in crop improvement and biotechnology. Integrating metabolomics data with other omics data (genomics, transcriptomics, and proteomics) provides a more comprehensive perspective of plant biology. This systems biology approach enables researchers to understand the complex interactions within organisms.

4.
Photochem Photobiol Sci ; 17(8): 1108-1117, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-29993086

RESUMEN

The photoreceptor UV RESISTANCE LOCUS 8 (UVR8) activates photomorphogenic responses when plants are exposed to ultraviolet-B (UV-B) light. However, whereas the absorption spectrum of UVR8 peaks at 280 nm, action spectra for several photomorphogenic UV-B responses show maximal photon effectiveness at 290-300 nm. To investigate this apparent discrepancy we measured the effectiveness of UV wavelengths in initiating two responses in Arabidopsis: photoconversion of homodimeric UVR8 into the monomeric form, which is active in signaling, and accumulation of transcripts of the ELONGATED HYPOCOTYL 5 (HY5) transcription factor, which has a key role in UVR8-mediated responses. When purified UVR8 or Arabidopsis leaf extracts were exposed to UV light monomerisation was maximal at approximately 280 nm, which correlates with the UVR8 absorption spectrum. When intact plants were exposed to UV, monomerisation was most strongly initiated at approximately 290 nm, and this shift in maximal effectiveness could be explained by strong absorption or reflectance at 280 nm by leaf tissue. Notably, the action spectrum for accumulation of HY5 transcripts in the same leaf tissue samples used to assay UVR8 dimer/monomer status peaked at approximately 300 nm. Possible reasons for the difference in maximal photon effectiveness of UVR8 monomerisation and HY5 transcript accumulation in leaf tissue are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Nucleares/metabolismo , Rayos Ultravioleta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Dimerización , Expresión Génica/efectos de la radiación , Proteínas Nucleares/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química
5.
Front Plant Sci ; 15: 1382914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606062

RESUMEN

In recent years, environmental stresses viz., drought and high-temperature negatively impacts the tomato growth, yield and quality. The effects of combined drought and high-temperature (HT) stresses during the flowering stage were investigated. The main objective was to assess the effects of foliar spray of melatonin under both individual and combined drought and HT stresses at the flowering stage. Drought stress was imposed by withholding irrigation, whereas HT stress was imposed by exposing the plants to an ambient temperature (AT)+5°C temperature. The drought+HT stress was imposed by exposing the plants to drought first, followed by exposure to AT+5°C temperature. The duration of individual and combined drought or HT stress was 10 days. The results showed that drought+HT stress had a significant negative effect compared with individual drought or HT stress alone. However, spraying 100 µM melatonin on the plants challenged with individual or combined drought and HT stress showed a significant increase in total chlorophyll content [drought: 16%, HT: 14%, and drought+HT: 11%], Fv/Fm [drought: 16%, HT: 15%, and drought+HT: 13%], relative water content [drought: 10%, HT: 2%, and drought+HT: 8%], and proline [drought: 26%, HT: 17%, and drought+HT: 14%] compared with their respective stress control. Additionally, melatonin positively influenced the stomatal and trichome characteristics compared with stress control plants. Also, the osmotic adjustment was found to be significantly increased in the melatonin-sprayed plants, which, in turn, resulted in an increased number of fruits, fruit set percentage, and fruit yield. Moreover, melatonin spray also enhanced the quality of fruits through increased lycopene content, carotenoid content, titratable acidity, and ascorbic acid content, compared with the stress control. Overall, this study highlights the usefulness of melatonin in effectively mitigating the negative effects of drought, HT, and drought+HT stress, thus leading to an increased drought and HT stress tolerance in tomato.

6.
Sci Rep ; 14(1): 16305, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009646

RESUMEN

The agronomic stability and nutritional importance of 30 (Test genotypes: 29 + Check: 1 = 30) promising horse gram mutants were evaluated in this multi-environment-based experiment (MEE). Attempts were made to (i) identify stable mutants for agronomic traits through AMMI and GGE biplot models, (ii) quantify nutritional traits, (iii) understand the linkage between yield and nutritional traits, and (iv) estimate physical (PP) and cooking properties (CP) of selected genotypes to fix their food-chain usability. The ANOVA of the pooled data exhibited significant differences among environments (E), genotypes (G), and GxE interaction. The combined AMMI and GGE results helped to identify a few good-yielding and stable genotypes (GYSM) (G1, G25, G3, and G27). The yield advantages of these GYSMs over the parent PAIYUR 2 are 42.99%, 34.63%, 28.68%, and 30.59% respectively. The nutrient profiling of mutants revealed (i) a significant coefficient of variation for macronutrients (fat: 29.98%; fibre: 20.72%, and protein: 5.01%), (ii) a good range of variation for micronutrients, and (iii) helped to identify macro (MaNSM) and micro nutrient-specific mutants (MiNSM). The relationship analysis between yield and nutrient traits ascertained that yield had (i) positivity with protein (r2 = 0.69) and negativity for micronutrients except for Mn (r2 = 0.63), Cu (r2 = 0.46), and B (r2 = 0.01) in GYSM, (ii) positivity with protein and fibre in MaNSM, and (iii) negativity with micronutrients in MiNSM. Of the GYSM, G1 and G25 offer scope for commercial exploitation, and their PP and CP analyses revealed that G1 can be used for pastry and baked product preparation while G25 for weaning foods. Cooking time exhibited positivity with seed size parameters and negativity with water absorption capacity (r2 = - 0.53). An LC-MS-MS-based amino acid (AA) fractionation study showed the effect of induced mutagenesis on the contents of amino acids and also revealed the significance of horse gram for its lysine and methionine contents.


Asunto(s)
Genotipo , Mutación , Valor Nutritivo , Fabaceae/genética , Nutrientes/metabolismo , Nutrientes/análisis
7.
ACS Omega ; 9(24): 25870-25878, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911721

RESUMEN

Porous materials are highly explored platforms for fertilizer delivery. Among porous materials, metal-organic frameworks (MOFs) are an important class of coordination polymers in which metal ions and organic electron donors as linkers are assembled to form crystalline structures with stable nanoporosity. Selected amino acids were inherently found to have the capacity to hold the leaf cuticle. Hence, MOF synthesis was attempted in the presence of amino acids, which can act as surface terminators and can assist as hands to hold to the leaf for a controlled nutrient supply. By serendipity, the amino acids were found to act as modulators, resulting in well-stabilized porous MOF structures with iron metal nodes, which are often noted to be unstable. Thus, the composite, i.e., (MOF@aa) MOF modulated with amino acids, has efficient nutrient-feeding ability through the foliar route when compared to the control.

8.
Plant Mol Biol ; 81(1-2): 119-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23161198

RESUMEN

Artemisinin derivatives are effective anti-malarial drugs. In order to design transgenic plants of Artemisia annua with enhanced biosynthesis of artemisinin, we are studying the promoters of genes encoding enzymes involved in artemisinin biosynthesis. A 1,151 bp promoter region of the cyp71av1 gene, encoding amorpha-4,11-diene 12-hydroxylase, was cloned. Alignment of the cloned promoter and other cyp71av1 promoter sequences indicated that the cyp71av1 promoter may be different in different A. annua varieties. Comparison to the promoter of amorpha-4,11-diene synthase gene showed a number of putative cis-acting regulatory elements in common, suggesting a co-regulation of the two genes. The cyp71av1 promoter sequence was fused to the ß-glucuronidase (GUS) reporter gene and two varieties of A. annua and Nicotiana tabacum were transformed. In A. annua, GUS expression was exclusively localized to glandular secretory trichomes (GSTs) of leaf primordia and top expanded leaves. In older leaves, there is a shift of expression to T-shaped trichomes (TSTs). Only TSTs showed GUS staining in lower leaves and there is no GUS staining in old leaves. GUS expression in flower buds was specifically localized to GSTs. The recombinant promoter carries the cis-acting regulatory elements required for GST-specific expression. The cyp71av1 promoter shows activity in young tissues. The recombinant promoter was up to 200 times more active than the wild type promoter. GUS expression in transgenic N. tabacum was localized to glandular heads. Transcript levels were up-regulated by MeJA. Wound responsiveness experiment showed that the cyp71av1 promoter does not appear to play any role in the response of A. annua to mechanical stress.


Asunto(s)
Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antimaláricos/metabolismo , Secuencia de Bases , ADN de Plantas/genética , Expresión Génica , Genes de Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Redes y Vías Metabólicas , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Sesquiterpenos Policíclicos , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Ácido Nucleico , Sesquiterpenos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
9.
Genes (Basel) ; 14(9)2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37761897

RESUMEN

Ethiopian mustard (Brassica carinata A. Braun) is currently one of the potential oilseeds dedicated to the production for biofuel and other bio-industrial applications. The crop is assumed to be native to Ethiopia where a number of diversified B. carinata germplasms are found and conserved ex situ. However, there is very limited information on the genetic diversity and population structure of the species. This study aimed to investigate the genetic diversity and population structure of B. carinata genotypes of different origins using high-throughput single nucleotide polymorphism (SNP) markers. We used Brassica 90K Illumina InfiniumTM SNP array for genotyping 90 B. carinata genotypes, and a total of 11,499 informative SNP markers were used for investigating the population structure and genetic diversity. The structure analysis, principal coordinate analysis (PcoA) and neighbor-joining tree analysis clustered the 90 B. carinata genotypes into two distinct subpopulations (Pop1 and Pop2). The majority of accessions (65%) were clustered in Pop1, mainly obtained from Oromia and South West Ethiopian People (SWEP) regions. Pop2 constituted dominantly of breeding lines and varieties, implying target selection contributed to the formation of distinct populations. Analysis of molecular variance (AMOVA) revealed a higher genetic variation (93%) within populations than between populations (7%), with low genetic differentiation (PhiPT = 0.07) and poor correlation between genetic and geographical distance (R = 0.02). This implies the presence of gene flow (Nm > 1) and weak geographical structure of accessions. Genetic diversity indices showed the presence of moderate genetic diversity in B. carinata populations with an average genetic diversity value (HE = 0.31) and polymorphism information content (PIC = 0.26). The findings of this study provide important and relevant information for future breeding and conservation efforts of B. carinata.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Humanos , Polimorfismo de Nucleótido Simple/genética , Variación Genética/genética , Planta de la Mostaza/genética , Fitomejoramiento , Genotipo
10.
Front Plant Sci ; 14: 1076704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755695

RESUMEN

The wild species field cress (Lepidium campestre) has the potential to become a novel cover and oilseed crop for the Nordic climate. Its seed oil is however currently unsuitable for most food, feed, and industrial applications, due to the high contents of polyunsaturated fatty acids (PUFAs) and erucic acid (C22:1). As the biosynthesis of these undesirable fatty acids is controlled by a few well-known major dominant genes, knockout of these genes using CRISPR/Cas9 would thus be more effective in improving the seed oil quality. In order to increase the level of the desirable oleic acid (C18:1), and reduce the contents of PUFAs and C22:1, we targeted three important genes FATTY ACID ELONGASE1 (FAE1), FATTY ACID DESATURASE2 (FAD2), and REDUCED OLEATE DESATURASE1 (ROD1) using a protoplast-based CRISPR/Cas9 gene knockout system. By knocking out FAE1, we obtained a mutated line with almost no C22:1, but an increase in C18:1 to 30% compared with 13% in the wild type. Knocking out ROD1 resulted in an increase of C18:1 to 23%, and a moderate, but significant, reduction of PUFAs. Knockout of FAD2, in combination with heterozygous FAE1fae1 genotype, resulted in mutated lines with up to 66% C18:1, very low contents of PUFAs, and a significant reduction of C22:1. Our results clearly show the potential of CRISPR/Cas9 for rapid trait improvement of field cress which would speed up its domestication process. The mutated lines produced in this study can be used for further breeding to develop field cress into a viable crop.

12.
ACS Omega ; 8(31): 28143-28155, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576682

RESUMEN

Bare and stabilized zinc oxide nanoparticles (ZnO NPs) were prepared by a microwave-assisted method and used as a priming agent to improve the morphological, physiological, and biochemical quality of Vigna radiata. The priming action was made under normal and moisture stress conditions. A microwave reactor of 850 watts power was used to heat 30 mL of a nanocolloidal solution at 140 °C for 20 min. The stable spherical ZnO NPs at 50.4 mV with 28.2 nm particle size were generated and capped with different biomolecules, cysteine and PVA, to get biostabilized ZnO NPs at 48.8 and 108.5 nm with ζ potentials of -56.2 and -52.0 mV, respectively, holding distinct morphology. The nanopriming effect was studied in V. radiata seeds for bare ZnO and capped ZnO NPs under normal and moisture stress environments. Cysteine-capped ZnO NPs at 250 ppm showed improved germination (90 and 76%), radicle growth (7.6 and 3.6 cm), seedling Vigor (3064 and 1816), dry matter production (145.06 and 96.92 mg/25 seedlings), and hydrolytic (α-amylase and protease) and antioxidant (peroxidase and superoxide dismutase) enzyme activity under normal and moisture stress conditions. The improved priming action of cysteine-capped ZnO NPs is due to increased cell elongation and cell division in the radicle. The uptake and translocation of ZnO NPs in the V. radiata root are evidenced by the presence of an 11.4 ppm zinc level, which was also supported by EDAX and FITC labeling results.

13.
Metabolites ; 13(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36837784

RESUMEN

Horse gram (Macrotyloma uniflorum (Lam.) Verdc.) is an under-utilized legume grown in India. It is a good source of protein, carbohydrates, dietary fiber, minerals, and vitamins. We screened 252 horse gram germplasm accessions for horse gram yellow mosaic virus resistance using the percent disease index and scaling techniques. The percentage values of highly resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible were 0.34, 13.89, 38.89, 46.43, and 0.34, respectively. Repetitive trials confirmed the host-plant resistance levels, and yield loss was assessed. The present disease index ranged from 1.2 to 72.0 and 1.2 to 73.0 during the kharif and rabi seasons of 2018, respectively. The maximum percent yield loss was noticed in the HS (75.0 -89.4), while HR possessed the minimum (1.2-2.0). The methanolic leaf extracts of highly resistant and highly susceptible genotypes with essential controls were subjected to gas chromatography-mass spectrometry analysis. Differential accumulation of metabolites was noticed, and a total of 81 metabolites representing 26 functional groups were identified. Both highly resistant and susceptible genotypes harbored eight unique classes, while ten biomolecules were common. The hierarchical cluster analysis indicated a distinct metabolite profile. Fold change in the common metabolites revealed an enhanced accumulation of sugars, alkanes, and carboxylic acids in the highly resistant genotype. The principal component analysis plots explained 93.7% of the variation. The metabolite profile showed a significant accumulation of three anti-viral (octadecanoic acid, diphenyl sulfone, and 2-Aminooxazole), one insecticidal (9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol), one antifeedant (cucurbitacin B), and six metabolites with unknown biological function in the highly resistant genotype.

15.
Plants (Basel) ; 12(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37447095

RESUMEN

Mung bean, a legume, is sensitive to abiotic stresses at different growth stages, and its yield potential is affected by drought and high-temperature stress at the sensitive stage. Melatonin is a multifunctional hormone that plays a vital role in plant stress defense mechanisms. This study aimed to evaluate the efficiency of melatonin under individual and combined drought and high-temperature stress in mung bean. An experiment was laid out with five treatments, including an exogenous application of 100 µM melatonin as a seed treatment, foliar spray, and a combination of both seed treatment and foliar spray, as well as absolute control (ambient condition) and control (stress without melatonin treatment). Stresses were imposed during the mung bean's reproductive stage (31-40 DAS) for ten days. Results revealed that drought and high-temperature stress significantly decreased chlorophyll index, Fv/Fm ratio, photosynthetic rate, stomatal conductance, and transpiration rate through increased reactive oxygen species (ROS) production. Foliar application of melatonin at 100 µM concentration enhanced the activity of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbate peroxidase and the concentration of metabolites involved in osmoregulation and ion homeostasis; thereby, it improves physiological and yield-related traits in mung bean under individual and combined stress at the reproductive stage.

16.
Plant Cell Rep ; 31(7): 1309-19, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22565787

RESUMEN

UNLABELLED: Artemisia annua L. produces a number of sesquiterpene synthases, which catalyze the conversion of farnesyl diphosphate to various sesquiterpenes. The cDNAs encoding amorpha-4,11-diene synthase (ADS), a key enzyme in the artemisinin biosynthesis, and epi-cedrol synthase (ECS), a complex sesquiterpene cyclization synthase, were cloned into Cowpea mosaic virus-based viral vector (pEAQ-HT) with Kozak consensus motif and C-terminal histidine tag. The plasmids were transformed into Agrobacterium LBA4404 and, agroinfiltrated into Nicotiana benthamiana leaves along with vector (pJL3:p19) containing Tomato bushy stunt virus post-transcriptional gene silencing suppressor. Quantitative PCR was carried out to measure the transcript levels at 0, 3, 6, 9, 12 and 15 days post-infiltration (dpi). The highest relative expression was observed at 9 dpi for both genes. Transiently expressed recombinant proteins of ADS and ECS were confirmed by SDS-PAGE and western blot. Recombinant proteins were extracted from 9 dpi leaves and purified by immobilized metal ion affinity chromatography using histidine tag, which produced yields of 90 and 96 mg kg⁻¹ fresh weight of leaves for ADS and ECS, respectively. Activities of the purified enzymes were assayed using gas chromatography-mass spectrometry for product identification and quantification using valencene as internal standard. The recombinant ADS and ECS converted farnesyl diphosphate into amorpha-4,11-diene (97 %) and epi-cedrol (96 %) as the major products, respectively. The purified enzymes exhibited the specific activity of 0.002 and 0.01 µmol min⁻¹ mg⁻¹ protein for ADS and ECS, respectively. The apparent k(cat) values were 2.1 × 10⁻³ s⁻¹ and 11 × 10⁻³ s⁻¹ for ADS and ECS, respectively. KEY MESSAGE: Agroinfiltration of leaves of Nicotiana bentamiana can be used to produce recombinant biosynthetic enzymes as exemplified by two sesquiterpene synthases from Artemisia annua in relatively high yields.


Asunto(s)
Transferasas Alquil y Aril/biosíntesis , Artemisia annua/enzimología , Nicotiana/metabolismo , Proteínas de Plantas/biosíntesis , Agrobacterium , Transferasas Alquil y Aril/genética , Artemisia annua/genética , Clonación Molecular , Vectores Genéticos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Sesquiterpenos/metabolismo , Nicotiana/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-35667027

RESUMEN

Lycopene, a natural colorant and antioxidant with a huge growing market, is highly susceptible to photo/thermal degradation, which demands real-time sensors. Hence, here a transparent upconversion nanoparticles (UCNPs) strip having 30 mol % Yb, 0.1 mol % Tm, and ß-NaYF4 UCNPs, which shows an intense emission at 475 nm, has been developed. This strip has been found to be sensitive to lycopene with a detection limit as low as 10 nM using a smartphone camera, which is due to static quenching that is confirmed by the lifetime study. In comparison to previous paper strips, here the transparent strip has minimal scattering with maximum sensitivity in spite of not using any metal quenchers. An increase in strip hydrophobicity during the fabrication process complements the strip to selectively permeate and present an extraction-free substitute analysis for chromatography. Hydrophobicity endows the strip with the capability to reuse the strip with ∼100% luminescence recovery.

18.
Front Plant Sci ; 12: 680859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305978

RESUMEN

Difficulty in protoplast regeneration is a major obstacle to apply the CRISPR/Cas9 gene editing technique effectively in research and breeding of rapeseed (Brassica napus L.). The present study describes for the first time a rapid and efficient protocol for the isolation, regeneration and transfection of protoplasts of rapeseed cv. Kumily, and its application in gene editing. Protoplasts isolated from leaves of 3-4 weeks old were cultured in MI and MII liquid media for cell wall formation and cell division, followed by subculture on shoot induction medium and shoot regeneration medium for shoot production. Different basal media, types and combinations of plant growth regulators, and protoplast culture duration on each type of media were investigated in relation to protoplast regeneration. The results showed that relatively high concentrations of NAA (0.5 mg l-1) and 2,4-D (0.5 mg l-1) in the MI medium were essential for protoplasts to form cell walls and maintain cell divisions, and thereafter auxin should be reduced for callus formation and shoot induction. For shoot regeneration, relatively high concentrations of cytokinin were required, and among all the combinations tested, 2.2 mg l-1 TDZ in combination with auxin 0.5 mg l-1 NAA gave the best result with up to 45% shoot regeneration. Our results also showed the duration of protoplast culture on different media was critical, as longer culture durations would significantly reduce the shoot regeneration frequency. In addition, we have optimized the transfection protocol for rapeseed. Using this optimized protocol, we have successfully edited the BnGTR genes controlling glucosinolate transport in rapeseed with a high mutation frequency.

19.
Int J Biol Macromol ; 184: 955-966, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34153360

RESUMEN

Hemoglobin-based oxygen carriers have long been pursued to meet clinical needs by using native hemoglobin (Hb) from human or animal blood, or recombinantly produced Hb, but the development has been impeded by safety and toxicity issues. Herewith we report the successful production of human fetal hemoglobin (HbF) in Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transient expression. HbF is a heterotetrameric protein composed of two identical α- and two identical γ-subunits, held together by hydrophobic interactions, hydrogen bonds, and salt bridges. In our study, the α- and γ-subunits of HbF were fused in order to stabilize the α-subunits and facilitate balanced expression of α- and γ-subunits in N. benthamiana. Efficient extraction and purification methods enabled production of the recombinantly fused endotoxin-free HbF (rfHbF) in high quantity and quality. The transiently expressed rfHbF protein was identified by SDS-PAGE, Western blot and liquid chromatography-tandem mass spectrometry analyses. The purified rfHbF possessed structural and functional properties similar to native HbF, which were confirmed by biophysical, biochemical, and in vivo animal studies. The results demonstrate a high potential of plant expression systems in producing Hb products for use as blood substitutes.


Asunto(s)
Hemoglobina Fetal/genética , Nicotiana/genética , Oxígeno/metabolismo , Hemoglobina Fetal/aislamiento & purificación , Hemoglobina Fetal/metabolismo , Humanos , Enlace de Hidrógeno , Proteínas de Plantas/aislamiento & purificación , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo
20.
Sci Rep ; 10(1): 920, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969582

RESUMEN

Myoglobin is a heme-protein in the muscle of vertebrates with important functions in the oxygenation of tissues and as a regulator in nitric oxide signaling. Myoglobin from many species is also an important nutritional source of bioavailable iron. In this study, we have successfully produced human myoglobin in the leaves of Nicotiana benthamiana by transient expression using a viral vector delivered by Agrobacterium tumefaciens. Analyses confirmed that heme was incorporated and the protein was functional, with observed properties consistent with those of native myoglobins. A relatively high degree of purity could be achieved with low cost methods. The results show the high potential of plants as a production platform for heme proteins, a group of proteins of interest for iron nutrition applications and possible future pharmaceutical development.


Asunto(s)
Agrobacterium tumefaciens , Vectores Genéticos , Mioglobina/biosíntesis , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Agrobacterium tumefaciens/genética , Fenómenos Químicos , Desarrollo de Medicamentos/tendencias , Mioglobina/química , Mioglobina/genética , Hojas de la Planta/genética , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA