Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Angew Chem Int Ed Engl ; 63(3): e202311752, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37830922

RESUMEN

Inorganic nitrogen oxide (NOx ) species, such as NO, NO2 , NO3 - , NO2 - generated from the decomposition of organic matters, volcanic eruptions and lightning activated nitrogen, play important roles in the nitrogen cycle system and exploring the origin of life. Meanwhile, excessive emission of NOx gases and residues from industry and transportation causes troubling problems to the environment and human health. How to efficiently handle these wastes is a global problem. In response to the growing demand for sustainability, scientists are actively pursuing sustainable electrochemical technologies powered by renewable energy sources and efficient utilization of hydrogen energy to convert NOx species into high-value organonitrogen chemicals. In this minireview, recent advances of electrocatalytic systems for NOx species valorization in organonitrogen synthesis are classified and described, such as amino acids, amide, urea, oximes, nitrile etc., that have been widely applied in medicine, life science and agriculture. Additionally, the current challenges including multiple side reactions and complicated paths, viable solutions along with future directions ahead in this field are also proposed. The coupling electrocatalytic systems provide a green mode for fixing nitrogen cycle bacteria and bring enlightenment to human sustainable development.

2.
Angew Chem Int Ed Engl ; 63(26): e202405553, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38594220

RESUMEN

Oxime ethers are attractive compounds in medicinal scaffolds due to the biological and pharmaceutical properties, however, the crucial and widespread step of industrial oxime formation using explosive hydroxylamine (NH2OH) is insecure and troublesome. Herein, we present a convenient method of oxime ether synthesis in a one-pot tandem electrochemical system using magnesium based metal-organic framework-derived magnesium oxide anchoring in self-supporting carbon nanofiber membrane catalyst (MgO-SCM), the in situ produced NH2OH from nitrogen oxides electrocatalytic reduction coupled with aldehyde to produce 4-cyanobenzaldoxime with a selectivity of 93 % and Faraday efficiency up to 65.1 %, which further reacted with benzyl bromide to directly give oxime ether precipitate with a purity of 97 % by convenient filtering separation. The high efficiency was attributed to the ultrafine MgO nanoparticles in MgO-SCM, effectively inhibiting hydrogen evolution reaction and accelerating the production of NH2OH, which rapidly attacked carbonyl of aldehydes to form oximes, but hardly crossed the hydrogenation barrier of forming amines, thus leading to a high yield of oxime ether when coupling benzyl bromide nucleophilic reaction. This work highlights the importance of kinetic control in complex electrosynthetic organonitrogen system and demonstrates a green and safe alternative method for synthesis of organic nitrogen drug molecules.

3.
J Am Chem Soc ; 145(8): 4659-4666, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791392

RESUMEN

Ultrasmall metal nanoparticles (NPs) show high catalytic activity in heterogeneous catalysis but are prone to reunion and loss during the catalytic process, resulting in low chemoselectivity and poor efficiency. Herein, a locking effect strategy is proposed to synthesize high-loading and ultrafine metal NPs in metal-organic frameworks (MOFs) for efficient chemoselective catalysis with high stability. Briefly, the MOF ZIF-90 with aldehyde groups cooperating with diamine chains via aldimine condensation was interlocked, which was employed to confine in situ formation of Au NPs, denoted as Au@L-ZIF-90. The optimized Au@La-ZIF-90 has highly dispersed Au NPs (2.60 ± 0.81 nm) with a loading amount around 22 wt % and shows a great performance toward 3-aminophenylacetylene (3-APA) from the selective hydrogenation of 3-nitrophenylacetylene (3-NPA) with a high yield (99%) and excellent durability (over 20 cycles), far superior to contrast catalysts without chains locking and other reported catalysts. In addition, experimental characterization and systematic density functional theory calculations further demonstrate that the locked MOF modulates the charge of Au nanoparticles, making them highly specific for nitro group hydrogenation to obtain 3-APA with high selectivity (99%). Furthermore, this locking effect strategy is also applicable to other metal nanoparticles confined in a variety of MOFs, and all of these catalysts locked with chains show great selectivity (≥90%) of 3-APA. The proposed strategy in this work provides a novel and universal method for precise control of the inherent activity of accessible metal nanoparticles with a programmable MOF microenvironment toward highly specific catalysis.

4.
Angew Chem Int Ed Engl ; 62(45): e202312239, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37728507

RESUMEN

Pyridine oximes produced from aldehyde or ketone with hydroxylamine (NH2 OH) have been widely applied in pharmaceutics, enzymatic and sterilization. However, the important raw material NH2 OH exhibits corrosive and unstable properties, leading to substantial energy consumption during storage and transportation. Herein, this work presents a novel method for directly synthesizing highly valuable pyridine oximes using in situ generated NH2 OH from electrocatalytic NO reduction with well-design nanofiber membranes (Al-NFM) derived from NH2 -MIL-53(Al). Particularly, 2-pyridinealdoxime, the precursor of antidote pralidoxime (2-PAM) for nerve agents suffering from scarcity and high cost, was achieved with a Faraday efficiency up to 49.8 % and a yield of 92.1 %, attributing to the high selectivity of NH2 OH production on Al-NFM, further easily reacted with iodomethane to produce 2-PAM. This study proposes a creative approach, having wide universality for synthesizing pyridine and other oximes with a range of functional groups, which not only facilitates the conversion of exhaust gas (NO) and waste water (NO2 - ) into valuable chemicals especially NH2 OH production and in situ utilization through electrochemistry, but also holds significant potential for synthesis of neuro detoxifying drugs to humanity security.

5.
Molecules ; 27(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35056896

RESUMEN

The authors would like to correct spelling mistakes (undenatured type II collagen) in the title, as well as in the main manuscript including the tables and figures in the title paper [...].

6.
Molecules ; 26(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34443530

RESUMEN

Ageing-related bone impairment due to exposure to hyperglycemic environment is scarcely researched. The aim was to confirm the improvement effects of undenatured type II collagen (UC II) on bone impairment in ageing db/db mice, and the ageing model was established by normal feeding for 48-week-old. Then, the ageing db/db mice were randomly assigned to UC II intervention, the ageing model, and the chondroitin sulfate + glucosamine hydrochloride control groups. After 12 weeks of treatment, femoral microarchitecture and biomechanical parameters were observed, biomarkers including bone metabolism, inflammatory cytokines, and oxidative stress were measured, and the gastrocnemius function and expressions of interleukin (IL) 1ß, receptor activator of nuclear factor (NF)-κB ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) were analyzed. The results showed that the mice in the UC II intervention group showed significantly superior bone and gastrocnemius properties than those in the ageing model group, including bone mineral density (287.65 ± 72.77 vs. 186.97 ± 32.2 mg/cm3), gastrocnemius index (0.46 ± 0.07 vs. 0.18 ± 0.01%), muscle fiber diameter (0.0415 ± 0.005 vs. 0.0330 ± 0.002 mm), and cross-sectional area (0.0011 ± 0.00007 vs. 0.00038 ± 0.00004 mm2). The UC II intervention elevated bone mineralization and formation and decreased bone resorption, inflammatory cytokines, and the oxidative stress. In addition, lower protein expression of IL-1ß, RANKL, and TRAP in the UC II intervention group was observed. These findings suggested that UC II improved bones impaired by T2DM during ageing, and the likely mechanism was partly due to inhibition of inflammation and oxidative stress.


Asunto(s)
Resorción Ósea/tratamiento farmacológico , Colágeno Tipo II/farmacología , Interleucina-1beta/genética , Ligando RANK/genética , Fosfatasa Ácida Tartratorresistente/genética , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Envejecimiento/patología , Animales , Densidad Ósea/efectos de los fármacos , Resorción Ósea/etiología , Resorción Ósea/genética , Resorción Ósea/patología , Sulfatos de Condroitina/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosamina/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/genética , Inflamación/patología , Ratones , Ratones Endogámicos NOD/genética , Estrés Oxidativo/efectos de los fármacos
7.
Ecotoxicol Environ Saf ; 198: 110673, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32361495

RESUMEN

BACKGROUND: Previous studies have examined the relationships between prenatal fine particulate matter (PM2.5) exposure and gestational diabetes mellitus (GDM), but the results were inconsistent. Furthermore, the possible effect modification by ABO blood group has not been explored. OBJECTIVES: To assess the associations of PM2.5 exposures during pregnancy with maternal glucose levels as well as GDM, and further to evaluate the potential effect modification by ABO blood group. METHODS: Between January 2013 and January 2015, 4783 pregnant women were enrolled in our study based on a birth cohort in Wuhan. Daily PM2.5 exposure levels for each woman during pregnancy were estimated using a spatial-temporal land-use regression model. Linear regressions with general estimating equations (GEE) were performed to assess the associations between trimester-specific PM2.5 exposures and maternal glucose levels. Modified Poisson regressions with GEE analyses were used to evaluate the impacts of PM2.5 exposures during each trimester on the risk of GDM. The associations of PM2.5 exposure during the whole study period with glucose levels and GDM were estimated using multiple linear regression model and modified Poisson regression model, respectively. We conducted a stratified analysis to explore the potential effect modification by ABO blood group. RESULTS: Among all the 4783 participants, 394 (8.24%) had GDM. Exposure to PM2.5 was found to be positively associated with elevated fasting glucose level during the whole study period [0.382 mg/dL, 95% confidence interval (CI): 0.179-0.586, per 10 µg/m3 increase in PM2.5], the first trimester (0.154 mg/dL ,95% CI: 0.017-0.291) and the second trimester (0.541 mg/dL, 95% CI: 0.390-0.692). No statistically significant results were observed between PM2.5 and 1-h and 2-h glucose levels during any study period. Increased risks of GDM for each 10 µg/m3 increase in PM2.5 levels were observed during the whole study period [relative risk (RR): 1.120, 95% CI: 1.021-1.228] and the first trimester (RR: 1.074, 95% CI: 1.012-1.141), but not the second trimester (RR: 1.035, 95% CI: 0.969-1.106). Stratified analysis indicated that the associations of PM2.5 exposures with GDM were more pronounced among pregnant women with blood group A, but no significant effect modifications were observed. CONCLUSION: Our study enriched epidemiological evidence linking PM2.5 exposures during pregnancy to elevated maternal glucose levels and increased risk of GDM. More importantly, we first highlighted that the impact of PM2.5 on GDM might be greater among pregnant women with blood group A.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Glucemia/metabolismo , Diabetes Gestacional/epidemiología , Exposición Materna/estadística & datos numéricos , Material Particulado/toxicidad , Adulto , Contaminación del Aire/efectos adversos , Antígenos de Grupos Sanguíneos , Diabetes Gestacional/inducido químicamente , Femenino , Humanos , Modelos Lineales , Material Particulado/análisis , Embarazo
8.
Ecotoxicol Environ Saf ; 170: 253-258, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30529920

RESUMEN

Prenatal life exposure to fine particulate matter (aerodynamic diameter less than or equal to 2.5 µm, PM2.5) has been linked with increased risk of adverse fetal development and birth outcomes in previous studies. However, to our knowledge, no study has investigated the association of maternal PM2.5 with the risk of fetal distress, which is a harmful fetal status and may lead to fetal brain damage, even fetal death. Therefore, we conducted a study to determine the association between maternal PM2.5 and fetal distress among 7835 mother-infant pairs from a birth cohort, in Wuhan, China, 2013-2015. The individual daily PM2.5 level was assessed using land use regression model. We evaluated the association of maternal PM2.5 level over the whole pregnancy with fetal distress by logistic regression model, and estimated the risk between PM2.5 exposure in specific trimester and fetal distress using generalized estimating equations. We observed that per 10 µg/m3 change of maternal PM2.5 level over the whole pregnancy was associated with 25% increased risk of fetal distress (95% confidence interval: 1.09-1.44). Further, we found PM2.5 level in the 2nd trimester, but not in the 1st and 3rd trimesters, was associated with fetal distress. Stratified analyses indicated that the association was only significant among infants who were born in cold seasons. Our study suggested that PM2.5 exposure during the whole pregnancy exhibited significant associations with the risk of fetal distress, and exposure in the 2nd trimester maybe the susceptible window. Further stratified analyses indicated that birth season is a possible modifier in the association.


Asunto(s)
Contaminantes Atmosféricos/análisis , Sufrimiento Fetal/inducido químicamente , Sufrimiento Fetal/epidemiología , Exposición Materna/efectos adversos , Material Particulado/análisis , Adulto , Contaminantes Atmosféricos/toxicidad , China , Estudios de Cohortes , Femenino , Humanos , Modelos Logísticos , Material Particulado/toxicidad , Embarazo , Medición de Riesgo , Estaciones del Año
9.
Gene ; 927: 148604, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838872

RESUMEN

OBJECTIVE: To extract exosomes from obese and non-obese mice, screen specifically expressed microRNAs by high-throughput sequencing and explore their roles. METHODS: An animal obesity model was constructed, and the successful construction of the obesity model was verified by HE staining, Western Blot and RT-qPCR. In addition, exosomes were extracted and verified by Western Blot. High-throughput sequencing was performed on the extracted serum exosomes to screen for differentially expressed microRNAs. fluorescence quantitative RT-PCR (RT-qPCR) was used to validate the differentially expressed miRNAs and explore their functions. RESULTS: 8 microRNAs were up-regulated and 11 microRNAs were down-regulated. mmu-miR-674-5p and X_28316 were significantly down-regulated and had the greatest impact on protein pathways. 8_13258 was significantly up-regulated and affected multiple protein pathways. GO enrichment analysis suggested that the differentially expressed microRNAs were mainly involved in the cleavage of microtubule activity, transferase activity/transferase pentameric acid. GO enrichment analysis suggested that differentially expressed microRNAs were mainly involved in the processes of cleavage microtubule activity, transferase activity/transfer pentamer, and threonine phosphatase/threonine kinase activity.KEGG pathway enrichment analysis showed that differentially expressed microRNAs were mainly involved in the processes of regulating the phosphorylation of TP53 activity, the G2/M DNA damage checkpoint, and the processing of the ends of DNA double-strand breaks. Protein interaction networks were enriched for Stat3, Fgr, Camk2b, Rac1, Asb6, and Ankfy1. Suggesting that they may be mediated by differential genes to participate in the process of insulin resistance. qRT-PCR results showed that the expression trend of mmu-miR-674-5p was consistent with the sequencing results. It suggests that it may be able to participate in the regulation of insulin resistance as a target gene. CONCLUSION: microRNAs were differentially expressed in serum exosomes of obese and non-obese mice and might be involved in the specific regulation of insulin resistance. mmu-miR-674-5p was differentially expressed significantly and the validation trend was consistent with it, suggesting that it might be able to participate in the regulation of insulin resistance as a target gene.

10.
Sci Rep ; 14(1): 12335, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811752

RESUMEN

Meniscus pathologies (damage, extrusion) and synovitis are associated with knee osteoarthritis (KOA); however, whether synovitis mediates the relationship between meniscus pathologies and KOA radiographic progression remains unclear. We conducted an observational study in the Osteoarthritis Initiative (OAI) cohort, with a 48-month follow-up. Meniscus pathology and synovitis were measured by MRI osteoarthritis knee score (MOAKS) at baseline and 24 months, and a comprehensive synovitis score was calculated using effusion and Hoffa synovitis scores. The knee osteoarthritis radiographic progression was considered that Kellgren-Lawrence (KL) grade and joint space narrowing (JSN) grade at 48 months were increased compared to those at baseline. This study included a total of 589 participants, with KL grades mainly being KL1 (26.5%), KL2 (34.1%), and KL3 (30.2%) at baseline, while JSN grades were mostly 0 at baseline. A logistic regression model was used to analyze the relationship between meniscus pathology, synovitis, and KOA progression. Mediation analysis was used to evaluate the mediation effect of synovitis. The average age of the participants was 61 years old, 62% of which were female. The medial meniscus extrusion was longitudinally correlated with the progression of KL (odds ratio [OR]: 2.271, 95% confidence interval [CI]: 1.412-3.694) and medial JSN (OR: 3.211, 95% CI: 2.040-5.054). Additionally, the longitudinal correlation between medial meniscus damage and progression of KOA (OR: 1.853, 95% CI: 1.177-2.941) and medial JSN (OR: 1.655, 95% CI: 1.053-2.602) was significant. Synovitis was found to mediate the relationship between medial meniscus extrusion and KL and medial JSN progression at baseline (ß: 0.029, 95% CI: 0.010-0.053; ß: 0.022, 95% CI: 0.005-0.046) and beyond 24 months (ß: 0.039, 95% CI: 0.016-0.068; ß: 0.047, 95% CI: 0.020-0.078). However, we did not find evidence of synovitis mediating the relationship between meniscal damage and KOA progression. Synovitis mediates the relationship between medial meniscus extrusion (rather than meniscus damage) and KOA progression.


Asunto(s)
Progresión de la Enfermedad , Osteoartritis de la Rodilla , Sinovitis , Humanos , Sinovitis/diagnóstico por imagen , Sinovitis/patología , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética , Meniscos Tibiales/diagnóstico por imagen , Meniscos Tibiales/patología , Menisco/diagnóstico por imagen , Menisco/patología , Radiografía , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología
11.
Front Genet ; 15: 1379366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655056

RESUMEN

Objective: The article aims to provide genetic counseling to a family with two children who were experiencing growth and developmental delays. Methods: Clinical information of the proband was collected. Peripheral blood was collected from core family members to identify the initial reason for growth and developmental delays by whole exome sequencing (WES) and Sanger sequencing. To ascertain the consequences of the newly discovered variants, details of the variants detected were analyzed by bioinformatic tools. Furthermore, we performed in vitro experimentation targeting SNX14 gene expression to confirm whether the variants could alter the expression of SNX14. Results: The proband had prenatal ultrasound findings that included flattened frontal bones, increased interocular distance, widened bilateral cerebral sulci, and shortened long bones, which resulted in subsequent postnatal developmental delays. The older sister also displayed growth developmental delays and poor muscle tone. WES identified compound heterozygous variants of c.712A>T (p.Arg238Ter) and .2744A>T (p.Gln915Leu) in the SNX14 gene in these two children. Both are novel missense variant that originates from the father and mother, respectively. Sanger sequencing confirmed this result. Following the guideline of the American College of Medical Genetics and Genomics (ACMG), the SNX14 c.712A>T (p.Arg238Ter) variant was predicted to be pathogenic (P), while the SNX14 c.2744A>T (p.Gln915Leu) variant was predicted to be a variant of uncertain significance (VUS). The structural analysis revealed that the c.2744A>T (p.Gln915Leu) variant may impact the stability of the SNX14 protein. In vitro experiments demonstrated that both variants reduced SNX14 expression. Conclusion: The SNX14 gene c.712A>T (p.Arg238Ter) and c.2744A>T (p.Gln915Leu) were identified as the genetic causes of growth and developmental delay in two affected children. This conclusion was based on the clinical presentations of the children, structural analysis of the mutant protein, and in vitro experimental validation. This discovery expands the range of SNX14 gene variants and provides a foundation for genetic counseling and guidance for future pregnancies in the affected children's families.

12.
Mol Cytogenet ; 17(1): 4, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369498

RESUMEN

OBJECTIVE: The primary object of this study is to analyze chromosomal abnormalities in miscarriages detected by copy number variants sequencing (CNV-Seq), establish potential pathways or genes related to miscarriages, and provide guidance for birth health in the following pregnancies. METHODS: This study enrolled 580 miscarriage cases with paired clinical information and chromosomal detection results analyzed by CNV-Seq. Further bioinformatic analyses were performed on validated pathogenic CNVs (pCNVs). RESULTS: Of 580 miscarriage cases, three were excluded as maternal cell contamination, 357 cases showed abnormal chromosomal results, and the remaining 220 were normal, with a positive detection rate of 61.87% (357/577). In the 357 miscarriage cases, 470 variants were discovered, of which 65.32% (307/470) were pathogenic. Among all variants detected, 251 were numerical chromosomal abnormalities, and 219 were structural abnormalities. With advanced maternal age, the proportion of numerical abnormalities increased, but the proportion of structural abnormalities decreased. Kyoto Encyclopedia of Genes and Genomes pathway and gene ontology analysis revealed that eleven pathways and 636 biological processes were enriched in pCNVs region genes. Protein-protein interaction analysis of 226 dosage-sensitive genes showed that TP53, CTNNB1, UBE3A, EP300, SOX2, ATM, and MECP2 might be significant in the development of miscarriages. CONCLUSION: Our study provides evidence that chromosomal abnormalities contribute to miscarriages, and emphasizes the significance of microdeletions or duplications in causing miscarriages apart from numerical abnormalities. Essential genes found in pCNVs regions may account for miscarriages which need further validation.

13.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446434

RESUMEN

In recent years, it has been found that adjusting the organizational structure of Co3O4 through solid solution and other methods can effectively improve its catalytic performance for the oxidation of low concentration methane. Its catalytic activity is close to that of metal Pd, which is expected to replace costly noble metal catalysts. Therefore, the in-depth research on the mechanism and methods of Co3O4 microstructure regulation has very important academic value and economic benefits. In this paper, we reviewed the catalytic oxidation mechanism, microstructure regulation mechanism, and methods of nano-Co3O4 on methane gas, which provides reference for the development of high-activity Co3O4-based methane combustion catalysts. Through literature investigation, it is found that the surface energy state of nano-Co3O4 can be adjusted by loading of noble metals, resulting in the reduction of Co-O bond strength, thus accelerating the formation of reactive oxygen species chemical bonds, and improving its catalytic effect. Secondly, the use of metal oxides and non-metallic oxide carriers helps to disperse and stabilize cobalt ions, improve the structural elasticity of Co3O4, and ultimately improve its catalytic performance. In addition, the performance of the catalyst can be improved by adjusting the microstructure of the composite catalyst and optimizing the preparation process. In this review, we summarize the catalytic mechanism and microstructure regulation of nano-Co3O4 and its composite catalysts (embedded with noble metals or combined with metallic and nonmetallic oxides) for methane combustion. Notably, this review delves into the substance of measures that can be used to improve the catalytic performance of Co3O4, highlighting the constructive role of components in composite catalysts that can improve the catalytic capacity of Co3O4. Firstly, the research status of Co3O4 composite catalyst is reviewed in this paper. It is hoped that relevant researchers can get inspiration from this paper and develop high-activity Co3O4-based methane combustion catalyst.

14.
Nutrients ; 15(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049515

RESUMEN

The aim of this study was to investigate the potential protective effects of walnut oligopeptides (WOPs) on indomethacin-induced gastric ulcers in rats. The rats were divided into the following groups: normal group, model group, omeprazole group (0.02 g/kg), and WOPs groups (0.22, 0.44, and 0.88 g/kg, respectively). After receiving gavage once per day for 30 consecutive days, the rats were injected intraperitoneally with indomethacin 48 mg/kg to induce gastric ulcers. Then, the serum inflammatory cytokines and gastric prostaglandin E2 (PGE2), oxidative stress-related indicators, and the RNA expression of COX-1 and COX-2 were measured. The results revealed that WOPs confer significant gastroprotection on gastric ulcers caused by indomethacin, regulating inflammatory cytokines, oxidative stress, and prostaglandins synthesis, and enhancing the expression of COX-1 and COX-2 in gastric tissue, thus exerting its protective effect on gastric mucosa. The gastroprotective mechanism may be related to the involvement of the arachidonic acid metabolism and upregulation of tryptophan, phenylalanine, tyrosine, and alpha-Linolenic acid metabolism synthesis in vivo.


Asunto(s)
Juglans , Úlcera Gástrica , Ratas , Animales , Indometacina/toxicidad , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/prevención & control , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Mucosa Gástrica , Citocinas/metabolismo , Oligopéptidos/efectos adversos
15.
Nutrients ; 15(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37432394

RESUMEN

The study was aimed at investigating the effects of walnut oligopeptides (WOPs) on alcohol-induced acute liver injury and its underlying mechanisms. Male Sprague Dawley (SD) rats were randomly assigned to six groups: normal control, alcohol control, whey protein (440 mg/kg.bw), and three WOPs (220 mg/kg.bw, 440 mg/kg.bw, 880 mg/kg.bw) groups. After 30 days of gavage, ethanol with a volume fraction of 50%, administered at a dose of 7 g/kg.bw., caused acute liver injury. A righting reflex experiment and a blood ethanol concentration evaluation were then performed. Serum biochemical parameters, inflammatory cytokines, liver alcohol metabolism enzymes, oxidative stress biomarkers, liver nuclear factor-κB (NF-κB p65), and cytochrome P4502E1 expression were determined. The results revealed that the intervention of 440 mg/kg and 880 mg/kg WOPs could alleviate the degree of intoxication, decrease blood ethanol concentration, alleviate alcohol-induced hepatic steatosis, enhance the activity of hepatic ethanol metabolizing enzymes and antioxidant capacity, reduce lipid oxidation products and pro-inflammatory factor contents, and inhibit the expression of NF-κBp65 in the livers of rats. The outcomes of the study suggest that WOPs have beneficial effects on liver damage caused by acute ethanol binge drinking, with the high-dose WOPs (880 mg/kg.bw) exerting the most pronounced hepatoprotective effect.


Asunto(s)
Juglans , Masculino , Ratas , Animales , Nivel de Alcohol en Sangre , Ratas Sprague-Dawley , Etanol/toxicidad , Hígado , Inflamación/tratamiento farmacológico , Estrés Oxidativo
16.
Front Public Health ; 11: 1189003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304102

RESUMEN

Background: In recent studies, individual scapular anatomy has been found to be related to degenerative full-thickness rotator cuff tears. However, research on the relationship between the anatomical characteristics of shoulder radiographs and bursal-sided partial-thickness rotator cuff tears (PTRCTs) is limited, and the risk factors for this pathology still need to be determined. Methods: The bursal-sided PTRCTs group included 102 patients without a history of shoulder trauma who underwent arthroscopy between January 2021 and October 2022. A total of 102 demographically matched outpatients with intact rotator cuffs were selected as the control group. Radiographs were used to measure the lateral acromial angle (LAA), critical shoulder angle (CSA), greater tuberosity angle (GTA), ß-angle, acromion index (AI), acromiohumeral distance (AHD), acromial tilt (AT), acromial slope (AS), acromial type, and acromial spur by two independent observers. Multivariate analyses of these data were used to identify potential risk factors for bursal-sided PTRCTs. Receiver operating characteristic (ROC) analysis was performed to assess the sensitivity and specificity of CSA, GTA, and AI for this type of pathology. Result: The ß-angle, AHD, AS and acromion type showed no difference between bursal-sided PTRCTs and controls (p = 0.009, 0.200, 0.747 and 0.078, respectively). CSA, GTA and AI were significantly higher in bursal-sided PTRCTs (p < 0.001). LAA, ß-angle and AT were significantly lower in bursal-sided PTRCTs. Multivariate logistic regression analysis demonstrated significant correlations between the acromial spur (p = 0.024), GTA (p = 0.004), CSA (p = 0.003) and AI (p = 0.048) and bursal-sided PTRCTs. The areas under the ROC curves for AI, CSA, and GTA were 0.655 (95% CI 0.580-0.729), 0.714 (95% CI 0.644-0.784), and 0.695 (95% CI 0.622-0.767), respectively. Conclusion: Acromial spur, GTA, CSA, and AI were independent risk factors for bursal-sided PTRCTs. Furthermore, CSA was the most powerful predictor of bursal-sided PTRCTs compared to GTA and AI.


Asunto(s)
Lesiones del Manguito de los Rotadores , Hombro , Humanos , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Pronóstico , Análisis Multivariante , Pacientes Ambulatorios
17.
Nutrients ; 15(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37049582

RESUMEN

The aim of this study was to clarify the anti-fatigue effect of peanut oligopeptides (POPs) in mice and to investigate its possible underlying mechanism. A total of 150 male ICR mice were randomly assigned into five groups: control, whey protein (0.50 g/kg·bw), and three peanut peptide groups (0.25, 0.50, and 1.00 g/kg·bw). All the mice were treated with intra-gastric administration for 30 days. Following the intervention, a weight-loaded swimming test, blood lactate concentration, glycogen content, the activities of antioxidant factors and energy metabolism enzymes, and the function of mitochondria in the skeletal muscle were examined. The results show that POP intervention significantly prolonged the exhaustive swimming time, decreased blood lactate concentration levels, regulated the process of energy metabolism, and increased the level of antioxidant enzymes, muscle glycogen, and expressions of mtTFA and NRF-1 in the mitochondria of the gastrocnemius muscle. The results suggest that POPs produce an anti-fatigue effect in the animals, and they may exert this effect through the mechanism of improving the animals' antioxidant capacity to reduce oxidative damage levels and regulating the process of energy metabolism.


Asunto(s)
Antioxidantes , Arachis , Masculino , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Arachis/metabolismo , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo , Natación/fisiología , Oligopéptidos/química , Lactatos/metabolismo , Glucógeno/metabolismo
18.
Nanomicro Lett ; 16(1): 18, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975889

RESUMEN

The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone. Constructing multifactorial, spatially oriented scaffolds to stimulate osteochondral regeneration, has immense significance. Herein, targeted drugs, namely kartogenin@polydopamine (KGN@PDA) nanoparticles for cartilage repair and miRNA@calcium phosphate (miRNA@CaP) NPs for bone regeneration, were in situ deposited on a patterned supramolecular-assembled 2-ureido-4 [lH]-pyrimidinone (UPy) modified gelation hydrogel film, facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands. This hydrogel film can be rolled into a cylindrical plug, mimicking the Haversian canal structure of natural bone. The resultant hydrogel demonstrates stable mechanical properties, a self-healing ability, a high capability for reactive oxygen species capture, and controlled release of KGN and miR-26a. In vitro, KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3ß/ß-catenin pathways, respectively. In vivo, the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration, evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones, along with the successful integration of neocartilage with subchondral bone. This biomaterial delivery approach represents a significant toward improved osteochondral repair.

19.
Acta Biomater ; 161: 80-99, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804538

RESUMEN

The regenerative capabilities including self-renewal, migration and differentiation potentials shift from the embryonic phase to the mature period of endogenous tendon stem/progenitor cells (TSPCs) characterize restricted functions and disabilities following tendon injuries. Recent studies have shown that tendon regeneration and repair rely on multiple specific transcription factors to maintain TSPCs characteristics and functions. Here, we demonstrate Yap, a Hippo pathway downstream effector, is associated with TSPCs phenotype and regenerative potentials through gene expression analysis of tendon development and repair process. Exosomes have been proven an efficient transport platform for drug delivery. In this study, purified exosomes derived from donor platelets are loaded with recombinant Yap1 protein (PLT-Exo-Yap1) via electroporation to promote the stemness and differentiation potentials of TSPCs in vitro. Programmed TSPCs with Yap1 import maintain stemness and functions after long-term passage in vitro. The increased oxidative stress levels of TSPCs are related to the phenotype changes in duplicative senescent processes. The results show that treatment with PLT-Exo-Yap1 significantly protects TSPCs against oxidative stressor-induced stemness loss and senescence-associated secretory phenotype (SASP) through the NF-κB signaling pathway. In addition, we fabricate an Exos-Yap1-functioned GelMA hydrogel with a parallel-aligned substrate structure to enhance TSPCs adhesion, promote cell stemness and force regenerative cells toward the tendon lineage for in vitro and in vivo tendon regeneration. The application of Exos-Yap1 functioned implant assists new tendon-like tissue formation with good mechanical properties and locomotor functions in a full-cut Achilles tendon defect model. Thus, PLT-Exo-Yap1-functionalized GelMA promotes the rejuvenation of TSPCs to facilitate functional tendon regeneration. STATEMENT OF SIGNIFICANCE: This is the first study to explore that the hippo pathway downstream effector Yap is involved in tendon aging and repair processes, and is associated with the regenerative capabilities of TSPCs. In this syudy, Platelet-derived exosomes (PLT-Exos) act as an appropriate carrier platform for the delivery of recombinant Yap1 into TSPCs to regulate Yap activity. Effective Yap1 delivery inhibit oxidative stress-induced senescence associated phenotype of TSPCs by blocking ROS-mediated NF-κb signaling pathway activation. This study emphasizes that combined application of biomimetic scaffolds and Yap1 loaded PLT-Exos can provide structural support and promote rejuvenation of resident cells to assist functional regeneration for Achilles tendon defect, and has the prospect of clinical setting.


Asunto(s)
Tendón Calcáneo , Exosomas , Rejuvenecimiento , FN-kappa B/metabolismo , Plaquetas , Proliferación Celular , Células Madre , Factores de Transcripción/metabolismo , Regeneración
20.
Food Chem ; 397: 133788, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35933749

RESUMEN

This study investigated the effects of exogenous salicylic acid (SA) treatment (0, control; 3 mmol L-1) on the antioxidant and hormone levels of winter jujube during shelf life (20 d) at 4 °C. The results showed that 3 mmol L-1 SA treatment preferably maintained firmness, color, titratable acidity, and total soluble solids, and effectively reduced the respiratory intensity and TSS/TA value (13.08%) of the fruit. Compared with the control group, the SA group had a higher content of sucrose (14.03%) and malic acid (29.13%). Meanwhile, SA reduced the accumulation of H2O2 (27.73%) and O2- (45.44%) by enhancing the activity of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and the content of antioxidant substances (ascorbic acid, total phenols, total flavonoids, and glutathione) in the fruit. In addition, 3 mmol L-1 SA treatment led to higher levels of endogenous abscisic acid (18.49%) and SA (20.47%) in fruit, and lower concentration of jasmonic acid (42.68%), but had a weak effect on indole acetic acid levels.


Asunto(s)
Antioxidantes , Ziziphus , Antioxidantes/farmacología , Frutas , Hormonas , Peróxido de Hidrógeno/farmacología , Ácido Salicílico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA