Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(2): 248-267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37833536

RESUMEN

There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg-1·d-1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg-1·d-1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia. Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Ácidos Cafeicos , Ferroptosis , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedades Neuroinflamatorias , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Antioxidantes/farmacología , Daño por Reperfusión/metabolismo
2.
Acta Pharmacol Sin ; 45(6): 1142-1159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38409216

RESUMEN

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in elderly people and substantially affects patient quality of life. Oxidative stress is considered a key factor in the development of AD. Nrf2 plays a vital role in maintaining redox homeostasis and regulating neuroinflammatory responses in AD. Previous studies show that potassium 2-(1-hydroxypentyl)-benzoate (PHPB) exerts neuroprotective effects against cognitive impairment in a variety of dementia animal models such as APP/PS1 transgenic mice. In this study we investigated whether PHPB ameriorated the progression of AD by reducing oxidative stress (OS) damage. Both 5- and 13-month-old APP/PS1 mice were administered PHPB (100 mg·kg-1·d-1, i.g.) for 10 weeks. After the cognition assessment, the mice were euthanized, and the left hemisphere of the brain was harvested for analyses. We showed that 5-month-old APP/PS1 mice already exhibited impaired performance in the step-down test, and knockdown of Nrf2 gene only slightly increased the impairment, while knockdown of Nrf2 gene in 13-month-old APP/PS1 mice resulted in greatly worse performance. PHPB administration significantly ameliorated the cognition impairments and enhanced antioxidative capacity in APP/PS1 mice. In addition, PHPB administration significantly increased the p-AKT/AKT and p-GSK3ß/GSK3ß ratios and the expression levels of Nrf2, HO-1 and NQO-1 in APP/PS1 mice, but these changes were abolished by knockdown of Nrf2 gene. In SK-N-SH APPwt cells and primary mouse neurons, PHPB (10 µM) significantly increased the p-AKT/AKT and p-GSK3ß/GSK3ß ratios and the level of Nrf2, which were blocked by knockdown of Nrf2 gene. In summary, this study demonstrates that PHPB exerts a protective effect via the Akt/GSK3ß/Nrf2 pathway and it might be a promising neuroprotective agent for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Trastornos de la Memoria , Ratones Transgénicos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Masculino , Humanos , Ratones Endogámicos C57BL
3.
J Asian Nat Prod Res ; 24(6): 577-588, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34292106

RESUMEN

Dimethyl itaconate (DMI) is an analog of dimethyl fumarate (DMF), an approved NF-E2-related Factor 2 (Nrf2) activator for multiple sclerosis. This study evaluated the potential of DMI as an anti-inflammatory agent by comparing DMI with DMF in electrophilicity, Nrf2 activation, and anti-inflammation in vitro. The results showed that DMI was less electrophilic but better at inducing a durable activation of Nrf2 when compared with DMF. However, DMI demonstrated poor anti-inflammatory effects in Jurkat cells, bone marrow-derived dendritic cells, and RAW264.7 cells. Our study suggested that DMI was a potent electrophilic Nrf2 activator but was probably not a promising anti-inflammatory agent.


Asunto(s)
Dimetilfumarato , Factor 2 Relacionado con NF-E2 , Antiinflamatorios/farmacología , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Estructura Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Succinatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA