Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Water Res ; 188: 116514, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075597

RESUMEN

We analyzed mid- to long-term 137Cs wash-off from the catchments contaminated due to the Chernobyl accident in 1986 and the Fukushima Dai-ichi Nuclear Power Plant accident in 2011. A semi-empirical diffusional model for radionuclide wash-off is proposed to enable estimation of the dissolved and particulate 137Cs wash-off ratios for the Chernobyl and Fukushima contaminated catchments; the differences in the wash-off characteristics for these two regions are explained and their long-term trends predicted. The model is based on the premise that the catchment topsoil layer is the source of sediments in the rivers, and the radionuclide concentration in the topsoil can be described by a simple diffusion equation. The particulate 137Cs wash-off ratios for the Fukushima contaminated catchments appear to be comparable or slightly lower than those for Chernobyl. The dissolved 137Cs wash-off ratios for Fukushima catchments are at least an order of magnitude lower than those for Chernobyl, mainly due to an order of magnitude difference in the 137Cs distribution coefficients for the Fukushima and Chernobyl rivers. The proposed semi-empirical diffusional model for radionuclide wash-off satisfactorily describes the temporal trends in the 137Cs wash-off characteristics for both the Chernobyl and Fukushima cases, and can be used as a tool for predicting 137Cs wash-off after a nuclear accident.


Asunto(s)
Accidente Nuclear de Chernóbil , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Radioisótopos de Cesio/análisis , Japón , Ríos , Contaminantes Radiactivos del Agua/análisis
2.
Chemosphere ; 265: 129058, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33250230

RESUMEN

This study analyzes the 137Cs behavior in the ponds of Okuma Town from 2015 to 2019 in the Fukushima Dai-ichi nuclear power plant (FDNPP) exclusion zone. A decline in both particulate and dissolved 137Cs activity concentrations was revealed. The decline rate constants for the particulate 137Cs activity concentration were found to be higher than for the dissolved 137Cs activity concentration. In terms of seasonality the dissolved 137Cs concentrations were higher from June to October, depending on the specific pond and year, most likely due to temperature dependence of 137Cs desorption from frayed edge sites of micaceous clay minerals. The apparent Kd(137Cs) in the studied ponds, in absolute value, appeared to be much higher than that for closed and semi-closed lakes of the Chernobyl contaminated area; however, these were comparable to the values characteristic of the rivers and reservoirs of the FDNPP contaminated area. The apparent Kd(137Cs) in the suspended sediment-water system was observed to decrease over time. It was hypothesized that this trend was associated with the decomposition of glassy hot particles. Relying on the theory of selective sorption and fixation, the exchangeable radiocesium interception potential, RIPex(K) was estimated using data on 137Cs speciation in the surface bottom-sediment layer and its distribution in the sediment-water system. For the studied ponds, RIPex(K) was on the average 2050 mEq/kg, which is within the range of values measured in laboratory studies reported in the literature.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Radioisótopos de Cesio/análisis , Japón , Plantas de Energía Nuclear , Estanques , Contaminantes Radiactivos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA