Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 40(11): 5837-5849, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38457691

RESUMEN

A method to synthesize stable, raspberry-like nanoparticles (NPs), using surface grafting of poly(glycidyl methacrylate) (PGMA) brushes on a polystyrene (PS) core with varying grafting densities, is reported. A two-step functionalization reaction of PGMA epoxide groups comprising an amination step first using ethylene diamine and then followed by a quaternization using glycidyltrimethylammonium chloride generates permanently and positively charged polyelectrolyte brushes, which result in both steric and electrostatic stabilization. The dispersion stability of the brush-bearing NPs is dramatically improved compared to that of the pristine PS core in salt solutions at ambient (25 °C) and elevated temperatures (60 °C). Additionally, the grafted polyelectrolyte chains undergo a reversible swelling in the presence of different ionic strength (IS) salts, which modulate the surface properties, including roughness, stiffness, and adhesion. An atomic force microscope under both dry and wet conditions was used to image conformational changes of the polyelectrolyte chains during the swelling and deswelling transitions as well as to probe the nanomechanical properties by analyzing the corresponding force-sample separation curves. The quaternized polyelectrolyte brushes undergo a conformational transition from a collapsed state to a swelled state in the osmotic brush (OB) regime triggered by the osmotic gradient of mobile ions to the interior of the polymer chain. At IS ∼ 1 M, the brushes contract and the globules reform (salted brush state) as evidenced by an increase in the surface roughness and a reduction in the adhesion of the brushes. Beyond IS ∼ 1 M, quartz crystal microbalance with dissipation monitoring measurements show that salt uptake continues to take place predominantly on the exterior surface of the brush since salt adsorption is not accompanied by a size increase as measured by dynamic light scattering. The study adds new insights into our understanding of the behavior of NPs bearing salt-responsive polyelectrolyte brushes with adaptive swelling thresholds that can ultimately modulate surface properties.

2.
Langmuir ; 39(41): 14711-14717, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37792909

RESUMEN

Foam characterization is essential in many applications of foams, such as cleaning, food processing, cosmetics, and oil production, due to these applications' diversified requirements. The standard characterization method, the foam column test, cannot provide sufficient information for in-depth studies. Hence, there have been many studies that incorporated different characterization methods into a standard test. It should be enlightening and feasible to measure the foam viscosity, which is both of practical and fundamental interest during the foam column test, but it has never been done before. Here, we demonstrate a method to characterize aqueous foams and their aging behaviors with the simultaneous measurement of foam viscosity and foam height. Using a vibration viscometer, we integrate foam column experiments with in situ foam viscosity measurements. We studied the correlation among the foam structure, foam height, and foam viscosity during the foam decay process. We found a drastic decrease in foam viscosity in the early foam decay, while the foam height remained unchanged, which is explained by coarsening. This method is much more sensitive and time-efficient than conventional foam-height-based methods by comparing the half-life. This method successfully characterizes the stability of foams made of various combinations of surfactants and gases.

3.
Langmuir ; 39(8): 3118-3130, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36791471

RESUMEN

Particle-stabilized emulsions (Pickering emulsions) have recently attracted significant attention in scientific studies and for technological applications. The interest stems from the ease of directly assembling the particles at interfaces and modulating the interfacial properties. In this paper, we demonstrate the formation of stable, practical emulsions leveraging the assembly of ionizable, pH responsive silica nanoparticles, surface-functionalized by a mixture of silanes containing amine/ammonium groups, which renders them positively charged. Using pH as the trigger, the assembly and the behavior of the emulsion are controlled by modulating the charges of the functional groups of the nanoparticle and the oil (crude oil). In addition to their tunable charge, the particular combination of silane coupling agents leads to stable particle dispersions, which is critical for practical applications. Atomic force microscopy and interfacial tension (IFT) measurements are used to monitor the assembly, which is controlled by both the electrostatic interactions between the particles and oil and the interparticle interactions, both of which are modulated by pH. Under acidic conditions, when the surfaces of the oil and the nanoparticles (NPs) are positively charged, the NPs are not attracted at the interface and there is no significant reduction in the IFT. In contrast, under basic conditions in which the oil carries a high negative charge and the amine groups on the silica are deprotonated while still positively charged because of the ammonium groups, the NPs assemble at the interface in a closely packed configuration yielding a jammed state with a high dilatational modulus. As a result, two oil droplets do not coalesce even when pushed against each other and the emulsion stability improves significantly. The study provides new insights into the directed assembly of nanoparticles at fluid interfaces relevant to several applications, including environmental remediation, catalysis, drug delivery, food technology, and oil recovery.

4.
Langmuir ; 38(9): 2895-2905, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35192368

RESUMEN

Coarsening or Oswald ripening, induced by interbubble gas diffusion, is considered to dominate foam structure evolution in porous media. We present the first study of trapped foam coarsening dynamics under realistic deep reservoir conditions (up to 3200 psi/22 MPa of pore pressure and 100 °C of temperature) in a high-pressure and high-temperature microfluidic system. The findings are expected to help predict foam structure evolution in applications such as enhanced oil recovery and CO2 geological sequestration. It is shown that, in porous media, larger bubbles grow at the expense of smaller bubbles. The growth rate of the average bubble area (⟨a⟩) over time shows a long-term linear increase when ⟨a⟩ is between 1/5 and 1/2 of the average pore size. The foam coarsening kinetics are determined by the liquid film permeability, gas-liquid interfacial tension, and the molar volume of the dispersed phase. In summary, foams prepared with less water-soluble gases (e.g., N2 and air) and lower foam quality show slower coarsening kinetics due to a lower film permeability. Foam coarsening is more sensitive to surfactant concentration (than surfactant type), as it determines the interfacial tension that controls the mass transfer driving force (capillary pressure difference). The transport properties of the dispersed phase depend strongly on its density, which increases with increasing pore pressure and decreasing temperature. At the same experimental conditions, gas CO2 foam shows a 10-fold faster coarsening rate than N2 foam. However, dense (i.e., liquid and supercritical) CO2 foams show a remarkable 20-500-fold reduction in coarsening kinetics compared with gas N2 and CO2 foams due to the significantly reduced mass transfer driving forces. In a sense, trapped CO2 foam can be stronger than N2 foam at high-pressure and high-temperature conditions.

5.
Langmuir ; 38(1): 62-71, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34958229

RESUMEN

Characterization of complex oil emulsions is critical yet challenging both in science and in many industrial applications. Here we demonstrate for the first time the use of flow cytometry as a fast method for characterizing complex, polydisperse oil-water emulsions. Owing to our interest in understanding how the presence of specific ions might affect the properties of oil-water emulsions including size, polydispersity, and complexity, we present a systematic study of oil emulsions in deionized water and various brines of different ionic strength. Forward scatter (FSC) and side scatter (SSC) intensities associated with detailed statistics were judiciously combined to provide a better understanding of these complex systems. We find that the type and concentration profiles of ions around the oil droplets affect significantly the properties of the emulsion. Weakly hydrated cations NH4+ and Ca2+ appear to be more effective in screening the charge of oil droplets compared to the monovalent Na+ and divalent Mg2+ ions, respectively. As a result, coalescence and formation of larger droplets are seen in the case of NH4Cl and CaCl2 compared to NaCl and MgCl2, respectively. In addition, weakly hydrated anions such as Cl- can come closer to the oil surface and, thus, decrease the effective screening that the Na+ ions provide as compared to SO42- ions, which leads to more stable emulsions in NaCl compared to Na2SO4. In addition to these specific findings, the work demonstrates the utility of the technique as a new tool for characterizing oil emulsions in a wide spectrum of fields ranging from food to oil and gas applications.


Asunto(s)
Agua , Emulsiones , Citometría de Flujo , Concentración Osmolar , Tamaño de la Partícula
6.
Langmuir ; 38(20): 6387-6394, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35533362

RESUMEN

Interfacial tension (IFT) is a crucial parameter in many natural and industrial processes, such as enhanced oil recovery and subsurface energy storage. IFT determines how easy the fluids can pass through pore throats and hence will decide how much residual fluids will be left behind. Here, we use a porous glass micromodel to investigate the dynamic IFT between oil and Armovis viscoelastic surfactant (VES) solution based on the concept of drop deformation while passing through a pore throat. Three different concentrations of VES, that is, 0.5, 0.75, and 1.25% vol% prepared using 57 K ppm synthetic seawater, were used in this study. The rheology obtained using a rheometer at ambient temperature showed zero shear viscosity of 325, 1101, and 1953 cP for 0.5%, 0.75%, and 1.25% VES, respectively, with a power-law region between 2 and 50 1/s. The dynamic IFT increases with the shear rate and then reaches a plateau. The results of IFT were compared with those obtained from the spinning drop method, which shows 97% accuracy for 1.25% VES, whereas the accuracy decreased to 65% for 0.75 VES and 51% for 0.5% VES. The findings indicate that we can reliably estimate the IFT of VES at higher concentrations directly during multiphase flow in porous micromodels without the need to perform separate experiments and wait for a long time to reach equilibrium.

7.
Proc Natl Acad Sci U S A ; 116(37): 18257-18262, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-29899146

RESUMEN

Diffusiophoresis is the migration of a colloidal particle through a viscous fluid, caused by a gradient in concentration of some molecular solute; a long-range physical interaction between the particle and solute molecules is required. In the case of a charged particle and an ionic solute (e.g., table salt, NaCl), previous studies have predicted and experimentally verified the speed for very low salt concentrations at which the salt solution behaves ideally. The current study presents a study of diffusiophoresis at much higher salt concentrations (approaching the solubility limit). At such large salt concentrations, electrostatic interactions are almost completely screened, thus eliminating the long-range interaction required for diffusiophoresis; moreover, the high volume fraction occupied by ions makes the solution highly nonideal. Diffusiophoretic speeds were found to be measurable, albeit much smaller than for the same gradient at low salt concentrations.

8.
ACS Appl Mater Interfaces ; 15(4): 6113-6122, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692039

RESUMEN

A targeted and controlled delivery of molecular surfactants at oil-water interfaces using the directed assembly of nanoparticles, NPs, is reported. The mechanism of NP assembly at the interface and the release of molecular surfactants is followed by laser scanning confocal microscopy and surface force spectroscopy. The assembly of positively charged polystyrene NPs at the oil-water interface was facilitated by the introduction of carboxylic acid groups in the oil phase (e.g., by adding 1 wt % stearic acid to hexadecane to produce a model oil). The presence of positively charged NPs consistently lowers the stiffness of the water-oil interface. The effect is lessened, when the NPs are present in a solution of NaCl or deionized water at pH 2, consistent with a less dense monolayer of NPs at the interface in the last two systems. In addition, the NPs reduce the interfacial adhesion (i.e., the "stickiness" of the interface or, put differently, the pull-off force experienced by the atomic force microscopy (AFM) tip during retraction). After the assembly, the NPs can release a previously loaded cargo of surfactant molecules, which then facilitate the formation of a much finer oil-water emulsion. As a proof of concept, we demonstrate the release of octadecyl amine, ODA, that has been incorporated into the NPs prior to the assembly. The release of ODA causes the NPs to detach from the interface altering the interfacial properties and leads to finer oil droplets. This approach can be exploited in applications in several fields ranging from pharmaceutical and cosmetics to hydrocarbon recovery and oil-spill remediation, where a targeted and controlled release of surfactants is wanted.

9.
ACS Appl Mater Interfaces ; 13(21): 25553-25562, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34006101

RESUMEN

A stimuli-responsive, sub-100 nm nanoparticle (NP) platform with a hydrolyzable ester side chain for in situ generation of surfactants is demonstrated. The NPs were synthesized via copolymerization of vinyl-laurate and vinyl-acetate [p-(VL-co-VA), 3:1 molar ratio] and stabilized with a protective poly(ethylene-glycol) shell. The NPs are ∼55 nm in diameter with a zeta potential of -54 mV. Hydrolysis kinetics in an accelerated, base-catalyzed reaction show release of about 11 and 30% of the available surfactant at 25 and 80 °C, respectively. The corresponding values in seawater are 22 and 76%. The efficiency of the released surfactant in reducing the interfacial tension, altering wettability, and stabilizing oil-water emulsion was investigated through contact angle measurements and laser confocal scanning microscopy and benchmarked to sodium laurate, a commercially available surfactant. All these measurements demonstrate both the efficacy of the NP system for surfactant delivery and the ability of the released surfactant to alter wettability and stabilize an oil-water emulsion.

10.
ACS Omega ; 6(8): 5689-5697, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681608

RESUMEN

A new platform that allows encapsulation of anionic surfactants into nanosized capsules and subsequent release upon deployment is described. The system is based on DOWFAX surfactant molecules incorporated into sub-100 nm hollow silica nanoparticles composed of a mesoporous shell. The particles released 40 wt % of the encapsulated surfactant at 70 °C compared to 24 wt % at 25 °C after 21 and 18 days, respectively. The use of the particles for subsurface applications is assessed by studying the effectiveness of the particles to alter the wettability of hydrophobic surfaces and reduction of the interfacial tension. The release of the surfactant molecules in the suspension reduces the contact angle of a substrate from 105 to 25° over 55 min. A sustained release profile is demonstrated by a continuous reduction of the interfacial tension of an oil suspension, where the interfacial tension is reduced from 62 to 2 mN m-1 over a period of 3 days.

11.
Sci Rep ; 6: 27993, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27302076

RESUMEN

Current fluorescent nanoparticles-based tracer sensing techniques for oilfield applications suffer from insufficient sensitivity, with the tracer detection limit typically at the several hundred ppm level in untreated oil/water mixtures, which is mainly caused by the interference of the background fluorescence from the organic residues in crude oil under constant external excitation. Here we report the use of a persistent luminescence phenomenon, which enables an external excitation-free and thus background fluorescence-free measurement condition, for ultrahigh-sensitivity crude oil sensing. By using LiGa5O8:Cr(3+) near-infrared persistent luminescent nanoparticles as a tracer nanoagent, we achieved a tracer detection limit at the single-digit ppb level (down to 1 ppb concentration of nanoparticles) in high oil fraction (up to 65 wt.%) oil/water mixtures via a convenient, CCD camera-based imaging technique without any pretreatment or phase separation of the fluid samples. This detection limit is about four to five orders of magnitude lower than that obtained using conventional spectral methods. This study introduces a new type of tracer nanoagents and a new detection method for water tracer sensing in oil reservoir characterization and management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA