Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(6): 2148-2157, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36884029

RESUMEN

Quantum confined lead halide perovskite nanoplatelets are anisotropic materials displaying strongly bound excitons with spectrally pure photoluminescence. We report the controlled assembly of CsPbBr3 nanoplatelets through varying the evaporation rate of the dispersion solvent. We confirm the assembly of superlattices in the face-down and edge-up configurations by electron microscopy, as well as X-ray scattering and diffraction. Polarization-resolved spectroscopy shows that superlattices in the edge-up configuration display significantly polarized emission compared to face-down counterparts. Variable-temperature X-ray diffraction of both face-down and edge-up superlattices uncovers a uniaxial negative thermal expansion in ultrathin nanoplatelets, which reconciles the anomalous temperature dependence of the emission energy. Additional structural aspects are investigated by multilayer diffraction fitting, revealing a significant decrease in superlattice order with decreasing temperature, with a concomitant expansion of the organic sublattice and increase of lead halide octahedral tilt.

2.
Nano Lett ; 23(7): 2615-2622, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926921

RESUMEN

Cesium lead halide perovskite nanocrystals (PNCs) have emerged as a potential next-generation single quantum emitter (QE) material for quantum optics and quantum information science. Optical dephasing processes at cryogenic temperatures are critical to the quality of a QE, making a mechanistic understanding of coherence losses of fundamental interest. We use photon-correlation Fourier spectroscopy (PCFS) to obtain a lower bound to the optical coherence times of single PNCs as a function of temperature. We find that 20 nm CsPbBr3 PNCs emit nearly exclusively into a narrow zero-phonon line from 4 to 13 K. Remarkably, no spectral diffusion is observed at time scales of 10 µs to 5 ms. Our results suggest that exciton dephasing in this temperature range is dominated by elastic scattering from phonon modes with characteristic frequencies of 1-3 meV, while inelastic scattering is minimal due to weak exciton-phonon coupling.

3.
Nano Lett ; 23(4): 1128-1134, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36780509

RESUMEN

Lead halide perovskite nanocrystals (LHP NCs) are an emerging materials system with broad potential applications, including as emitters of quantum light. We apply design principles aimed at the structural optimization of surface ligand species for CsPbBr3 NCs, leading us to the study of LHP NCs with dicationic quaternary ammonium bromide ligands. Through the selection of linking groups and aliphatic backbones guided by experiments and computational support, we demonstrate consistently narrow photoluminescence line shapes with a full-width-at-half-maximum below 70 meV. We observe bulk-like Stokes shifts throughout our range of particle sizes, from 7 to 16 nm. At cryogenic temperatures, we find sub-200 ps lifetimes, significant photon coherence, and the fraction of photons emitted into the coherent channel increasing markedly to 86%. A 4-fold reduction in inhomogeneous broadening from previous work paves the way for the integration of LHP NC emitters into nanophotonic architectures to enable advanced quantum optical investigation.

4.
Phys Rev Lett ; 131(5): 053603, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37595234

RESUMEN

Solid-state single-photon emitters (SPEs) are quantum light sources that combine atomlike optical properties with solid-state integration and fabrication capabilities. SPEs are hindered by spectral diffusion, where the emitter's surrounding environment induces random energy fluctuations. Timescales of spectral diffusion span nanoseconds to minutes and require probing single emitters to remove ensemble averaging. Photon correlation Fourier spectroscopy (PCFS) can be used to measure time-resolved single emitter line shapes, but is hindered by poor signal-to-noise ratio in the measured correlation functions at early times due to low photon counts. Here, we develop a framework to simulate PCFS correlation functions directly from diffusing spectra that match well with experimental data for single colloidal quantum dots. We use these simulated datasets to train a deep ensemble autoencoder machine learning model that outputs accurate, noiseless, and probabilistic reconstructions of the noisy correlations. Using this model, we obtain reconstructed time-resolved single dot emission line shapes at timescales as low as 10 ns, which are otherwise completely obscured by noise. This enables PCFS to extract optical coherence times on the same timescales as Hong-Ou-Mandel two-photon interference, but with the advantage of providing spectral information in addition to estimates of photon indistinguishability. Our machine learning approach is broadly applicable to different photon correlation spectroscopy techniques and SPE systems, offering an enhanced tool for probing single emitter line shapes on previously inaccessible timescales.

5.
ACS Nano ; 18(11): 8248-8258, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38428021

RESUMEN

Imposing quantum confinement has the potential to significantly modulate both the structural and optical parameters of interest in many material systems. In this work, we investigate strongly confined ultrathin perovskite nanoplatelets APbBr3. We compare the all-inorganic and hybrid compositions with the A-sites cesium and formamidinium, respectively. Compared to each other and their bulk counterparts, the materials show significant differences in variable-temperature structural and optical evolution. We quantify and correlate structural asymmetry with the excitonic transition energy, spectral purity, and emission rate. Negative thermal expansion, structural and photoluminescence asymmetry, photoluminescence full width at half-maximum, and splitting between bright and dark excitonic levels are found to be reduced in the hybrid composition. This work provides composition- and structure-based mechanisms for engineering of the excitons in these materials.

6.
Sci Adv ; 9(32): eadh8508, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566651

RESUMEN

Scalable fabrication of two-dimensional (2D) arrays of quantum dots (QDs) and quantum rods (QRs) with nanoscale precision is required for numerous device applications. However, self-assembly-based fabrication of such arrays using DNA origami typically suffers from low yield due to inefficient QD and QR DNA functionalization. In addition, it is challenging to organize solution-assembled DNA origami arrays on 2D device substrates while maintaining their structural fidelity. Here, we reduced manufacturing time from a few days to a few minutes by preparing high-density DNA-conjugated QDs/QRs from organic solution using a dehydration and rehydration process. We used a surface-assisted large-scale assembly (SALSA) method to construct 2D origami lattices directly on solid substrates to template QD and QR 2D arrays with orientational control, with overall loading yields exceeding 90%. Our fabrication approach enables the scalable, high fidelity manufacturing of 2D addressable QDs and QRs with nanoscale orientational and spacing control for functional 2D photonic devices.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , ADN/química , Análisis de Secuencia por Matrices de Oligonucleótidos
7.
Nat Nanotechnol ; 18(9): 993-999, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37386140

RESUMEN

Quantum photonic technologies such as quantum communication, sensing or computation require efficient, stable and pure single-photon sources. Epitaxial quantum dots (QDs) have been made capable of on-demand photon generation with high purity, indistinguishability and brightness, although they require precise fabrication and face challenges in scalability. By contrast, colloidal QDs are batch synthesized in solution but typically have broader linewidths, low single-photon purities and unstable emission. Here we demonstrate spectrally stable, pure and narrow-linewidth single-photon emission from InP/ZnSe/ZnS colloidal QDs. Using photon correlation Fourier spectroscopy, we observe single-dot linewidths as narrow as ~5 µeV at 4 K, giving a lower-bounded optical coherence time, T2, of ~250 ps. These dots exhibit minimal spectral diffusion on timescales of microseconds to minutes, and narrow linewidths are maintained on timescales up to 50 ms, orders of magnitude longer than other colloidal systems. Moreover, these InP/ZnSe/ZnS dots have single-photon purities g(2)(τ = 0) of 0.077-0.086 in the absence of spectral filtering. This work demonstrates the potential of heavy-metal-free InP-based QDs as spectrally stable sources of single photons.

8.
Nat Commun ; 14(1): 2426, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105984

RESUMEN

Hybrid perovskites have emerged as a promising material candidate for exciton-polariton (polariton) optoelectronics. Thermodynamically, low-threshold Bose-Einstein condensation requires efficient scattering to the polariton energy dispersion minimum, and many applications demand precise control of polariton interactions. Thus far, the primary mechanisms by which polaritons relax in perovskites remains unclear. In this work, we perform temperature-dependent measurements of polaritons in low-dimensional perovskite wedged microcavities achieving a Rabi splitting of [Formula: see text] = 260 ± 5 meV. We change the Hopfield coefficients by moving the optical excitation along the cavity wedge and thus tune the strength of the primary polariton relaxation mechanisms in this material. We observe the polariton bottleneck regime and show that it can be overcome by harnessing the interplay between the different excitonic species whose corresponding dynamics are modified by strong coupling. This work provides an understanding of polariton relaxation in perovskites benefiting from efficient, material-specific relaxation pathways and intracavity pumping schemes from thermally brightened excitonic species.

9.
Science ; 363(6431): 1068-1072, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30792359

RESUMEN

Chemically made colloidal semiconductor quantum dots have long been proposed as scalable and color-tunable single emitters in quantum optics, but they have typically suffered from prohibitively incoherent emission. We now demonstrate that individual colloidal lead halide perovskite quantum dots (PQDs) display highly efficient single-photon emission with optical coherence times as long as 80 picoseconds, an appreciable fraction of their 210-picosecond radiative lifetimes. These measurements suggest that PQDs should be explored as building blocks in sources of indistinguishable single photons and entangled photon pairs. Our results present a starting point for the rational design of lead halide perovskite-based quantum emitters that have fast emission, wide spectral tunability, and scalable production and that benefit from the hybrid integration with nanophotonic components that has been demonstrated for colloidal materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA