Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant Cell ; 34(8): 3047-3065, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35595231

RESUMEN

Systemic acquired acclimation and wound signaling require the transmission of electrical, calcium, and reactive oxygen species (ROS) signals between local and systemic tissues of the same plant. However, whether such signals can be transmitted between two different plants is largely unknown. Here, we reveal a new type of plant-to-plant aboveground direct communication involving electrical signaling detected at the surface of leaves, ROS, and photosystem networks. A foliar electrical signal induced by wounding or high light stress applied to a single dandelion leaf can be transmitted to a neighboring plant that is in direct contact with the stimulated plant, resulting in systemic photosynthetic, oxidative, molecular, and physiological changes in both plants. Furthermore, similar aboveground changes can be induced in a network of plants serially connected via touch. Such signals can also induce responses even if the neighboring plant is from a different plant species. Our study demonstrates that electrical signals can function as a communication link between transmitter and receiver plants that are organized as a network (community) of plants. This process can be described as network-acquired acclimation.


Asunto(s)
Aclimatación , Plantas , Hojas de la Planta/fisiología , Especies Reactivas de Oxígeno , Transducción de Señal/fisiología
2.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542169

RESUMEN

LESION-SIMULATING DISEASE1 (LSD1) is one of the well-known cell death regulatory proteins in Arabidopsis thaliana. The lsd1 mutant exhibits runaway cell death (RCD) in response to various biotic and abiotic stresses. The phenotype of the lsd1 mutant strongly depends on two other proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN-DEFICIENT 4 (PAD4) as well as on the synthesis/metabolism/signaling of salicylic acid (SA) and reactive oxygen species (ROS). However, the most interesting aspect of the lsd1 mutant is its conditional-dependent RCD phenotype, and thus, the defined role and function of LSD1 in the suppression of EDS1 and PAD4 in controlled laboratory conditions is different in comparison to a multivariable field environment. Analysis of the lsd1 mutant transcriptome in ambient laboratory and field conditions indicated that there were some candidate genes and proteins that might be involved in the regulation of the lsd1 conditional-dependent RCD phenotype. One of them is METACASPASE 8 (AT1G16420). This type II metacaspase was described as a cell death-positive regulator induced by UV-C irradiation and ROS accumulation. In the double mc8/lsd1 mutant, we discovered reversion of the lsd1 RCD phenotype in response to UV radiation applied in controlled laboratory conditions. This cell death deregulation observed in the lsd1 mutant was reverted like in double mutants of lsd1/eds1 and lsd1/pad4. To summarize, in this work, we demonstrated that MC8 is positively involved in EDS1 and PAD4 conditional-dependent regulation of cell death when LSD1 function is suppressed in Arabidopsis thaliana. Thus, we identified a new protein compound of the conditional LSD1-EDS1-PAD4 regulatory hub. We proposed a working model of MC8 involvement in the regulation of cell death and we postulated that MC8 is a crucial protein in this regulatory pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Muerte Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo
3.
Plant J ; 105(3): 619-638, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33119927

RESUMEN

Chloroplast-to-nucleus retrograde signaling is essential for cell function, acclimation to fluctuating environmental conditions, plant growth and development. The vast majority of chloroplast proteins are nuclear-encoded, and must be imported into the organelle after synthesis in the cytoplasm. This import is essential for the development of fully functional chloroplasts. On the other hand, functional chloroplasts act as sensors of environmental changes and can trigger acclimatory responses that influence nuclear gene expression. Signaling via mobile transcription factors (TFs) has been recently recognized as a way of communication between organelles and the nucleus. In this study, we performed a targeted reverse genetic screen to identify dual-localized TFs involved in chloroplast retrograde signaling during stress responses. We found that CHLOROPLAST IMPORT APPARATUS 2 (CIA2) has a functional plastid transit peptide, and can be located both in chloroplasts and the nucleus. Further, we found that CIA2, along with its homolog CIA2-like (CIL) are involved in the regulation of Arabidopsis responses to UV-AB, high light and heat shock. Finally, our results suggest that both CIA2 and CIL are crucial for chloroplast translation. Our results contribute to a deeper understanding of signaling events in the chloroplast-nucleus cross-talk.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Cloroplastos/metabolismo , Fotosíntesis/fisiología , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Diurona/farmacología , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/fisiología , Plantas Modificadas Genéticamente , Transducción de Señal , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/genética
4.
Plant Physiol ; 186(4): 2190-2204, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34010410

RESUMEN

Stomatal movement and density influence plant water use efficiency and thus biomass production. Studies in model plants within controlled environments suggest MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4) may be crucial for stomatal regulation. We present functional analysis of MPK4 for hybrid aspen (Populus tremula × tremuloides) grown under natural field conditions for several seasons. We provide evidence of the role of MPK4 in the genetic and environmental regulation of stomatal formation, differentiation, signaling, and function; control of the photosynthetic and thermal status of leaves; and growth and acclimation responses. The long-term acclimation manifested as variations in stomatal density and distribution. Short-term acclimation responses were derived from changes in the stomatal aperture. MPK4 localized in the cytoplasm of guard cells (GCs) was a positive regulator of abscisic acid (ABA)-dependent stomatal closure and nitric oxide metabolism in the ABA-dependent pathways, while to a lesser extent, it was involved in ABA-induced hydrogen peroxide accumulation. MPK4 also affected the stomatal aperture through deregulation of microtubule patterns and cell wall structure and composition, including via pectin methyl-esterification, and extensin levels in the GC wall. Deregulation of leaf anatomy (cell compaction) and stomatal movement, together with increased light energy absorption, resulted in altered leaf temperature, photosynthesis, cell death, and biomass accumulation in mpk4 transgenic plants. Divergence between absorbed energy and assimilated energy is a bottleneck, and MPK4 can participate in the control of energy dissipation (thermal effects). Furthermore, MPK4 can participate in balancing the photosynthetic energy distribution via its effective use in growth or redirection to acclimation/defense responses.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Estomas de Plantas/fisiología , Populus/fisiología , Hibridación Genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/genética , Populus/enzimología , Populus/genética , Temperatura
5.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362171

RESUMEN

In order to survive, plants have, over the course of their evolution, developed sophisticated acclimation and defense strategies governed by complex molecular and physiological, and cellular and extracellular, signaling pathways. They are also able to respond to various stimuli in the form of tropisms; for example, phototropism or gravitropism. All of these retrograde and anterograde signaling pathways are controlled and regulated by waves of reactive oxygen species (ROS), electrical signals, calcium, and hormones, e.g., auxins. Auxins are key phytohormones involved in the regulation of plant growth and development. Acclimation responses, which include programmed cell death induction, require precise auxin perception. However, our knowledge of these pathways is limited. The Aux/IAA family of transcriptional corepressors inhibits the growth of the plant under stress conditions, in order to maintain the balance between development and acclimation responses. In this work, we demonstrate the Aux/IAA11 involvement in auxin sensing, survival, and acclimation to UV-AB, and in carrying out photosynthesis under inhibitory conditions. The tested iaa11 mutants were more susceptible to UV-AB, photosynthetic electron transport (PET) inhibitor, and synthetic endogenous auxin. Among the tested conditions, Aux/IAA11 was not repressed by excess light stress, exclusively among its phylogenetic clade. Repression of transcription by Aux/IAA11 could be important for the inhibition of ROS formation or efficiency of ROS scavenging. We also hypothesize that the demonstrated differences in the subcellular localization of the two Aux/IAA11 protein variants might indicate their regulation by alternative splicing. Our results suggest that Aux/IAA11 plays a specific role in chloroplast retrograde signaling, since it is not repressed by high (excess) light stress, exclusively among its phylogenetic clade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
6.
Plant Cell Environ ; 43(3): 649-661, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31760664

RESUMEN

It is well known that PsbS is a key protein for the proper management of excessive energy in plants. Plants without PsbS cannot trigger non-photochemical quenching, which is crucial for optimal photosynthesis under variable conditions. Our studies showed wild-type plants had enhanced tolerance to UV-C-induced cell death (CD) upon induction of light memory by a blue or red light. However, npq4-1 plants, which lack PsbS, as well as plants overexpressing this protein (oePsbS), responded differently. Untreated oePsbS appeared more tolerant to UV-C exposure, whereas npq4-1 was unable to adequately induce cross-tolerance to UV-C. Similarly, light memory induced by episodic blue or red light was differently deregulated in npq-4 and oePsbS, as indicated by transcriptomic analyses, measurements of the trans-thylakoid pH gradient, chlorophyll a fluorescence parameters, and measurements of foliar surface electrical potential. The mechanism of the foliar CD development seemed to be unaffected in the analysed plants and is associated with chloroplast breakdown. Our results suggest a novel, substantial role for PsbS as a regulator of chloroplast retrograde signalling for light memory, light acclimation, CD, and cross-tolerance to UV radiation.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Fenómenos Electrofisiológicos , Complejo de Proteína del Fotosistema II/metabolismo , Transducción de Señal/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/genética , Muerte Celular , Clorofila A/metabolismo , Fluorescencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Fuerza Protón-Motriz
7.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859110

RESUMEN

Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.


Asunto(s)
Cloroplastos/metabolismo , Mitocondrias/metabolismo , Plantas/metabolismo , Comunicación Celular , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico
8.
Plant Physiol ; 176(3): 2557-2569, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29298822

RESUMEN

Many mRNAs contain pause sites that briefly interrupt the progress of translation. Specific features that induce ribosome pausing have been described; however, their individual contributions to pause-site formation, and the overall biological significance of ribosome pausing, remain largely unclear. We have taken advantage of the compact genome of chloroplasts to carry out a plastid genome-wide survey of pause sites, as a basis for studying the impact of pausing on posttranslational processes. Based on ribosomal profiling of Arabidopsis (Arabidopsis thaliana) chloroplast mRNAs, we demonstrate that a combination of factors-mRNA secondary structure, internal Shine-Dalgarno sequences, and positively charged amino acids in the nascent peptide chain-explains 95% of the major pause sites on plastid mRNAs, whereas codon usage has little impact. The distribution of the pause sites is nonrandom and conforms to distinct patterns in the vicinity of sequences coding for transmembrane domains, which depend on their orientation within the membrane as well as being next to sequences coding for cofactor binding sites. We found strong indications that the mechanisms causing ribosomal pausing and at least some of the ribosomes pause sites are conserved between distantly related plant species. In addition, the positions of features that cause pausing are well conserved in photoautotrophic plants, but less so in their nonphotosynthetic, parasitic relatives, implying that the synthesis and assembly of photosynthetic multiprotein complexes requires localized ribosome pausing.


Asunto(s)
Arabidopsis/citología , Cloroplastos/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , ARN Mensajero/química , Ribosomas/metabolismo , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Plastidios/genética , Plastidios/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/química , Ribosomas/genética
9.
Physiol Plant ; 165(2): 369-382, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30461017

RESUMEN

In Arabidopsis thaliana, LESION SIMULATING DISEASE 1 (LSD1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4) proteins are regulators of cell death (CD) in response to abiotic and biotic stresses. Hormones, such as salicylic acid (SA), and reactive oxygen species, such as hydrogen peroxide (H2 O2 ), are key signaling molecules involved in plant CD. The proposed mathematical models presented in this study suggest that LSD1, EDS1 and PAD4 together with SA and H2 O2 are involved in the control of plant water use efficiency (WUE), vegetative growth and generative development. The analysis of Arabidopsis wild-type and single mutants lsd1, eds1, and pad4, as well as double mutants eds1/lsd1 and pad4/lsd1, demonstrated the strong conditional correlation between SA/H2 O2 and WUE that is dependent on LSD1, EDS1 and PAD4 proteins. Moreover, we found a strong correlation between the SA/H2 O2 homeostasis of 4-week-old Arabidopsis leaves and a total seed yield of 9-week-old plants. Altogether, our results prove that SA and H2 O2 are conditionally regulated by LSD1/EDS/PAD4 to govern WUE, biomass accumulation and seed yield. Conditional correlation and the proposed models presented in this study can be used as the starting points in the creation of a plant breeding algorithm that would allow to estimate the seed yield at the initial stage of plant growth, based on WUE, SA and H2 O2 content.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácido Salicílico/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Agua/metabolismo , Aclimatación/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Modelos Biológicos , Mutación/genética , Fotosíntesis/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Rayos Ultravioleta
10.
PLoS Genet ; 11(7): e1005373, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26197346

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Estrés Oxidativo/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Ascomicetos/inmunología , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Xantina Oxidasa/metabolismo
11.
Plant Cell Physiol ; 58(2): 207-215, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28184891

RESUMEN

In contrast to the function of reactive oxygen species, calcium, hormones and small RNAs in systemic signaling, systemic electrical signaling in plants is poorly studied and understood. Pulse amplitude-modulated Chl fluorescence imaging and surface electrical potential measurements accompanied by pharmacological treatments were employed to study stimuli-induced electrical signals in leaves from a broad range of plant species and in Arabidopsis thaliana mutants. Here we report that rapid electrical signals in response to a local heat stimulus regulate systemic changes in non-photochemical quenching (NPQ) and PSII quantum efficiency. Both stimuli-induced systemic changes in NPQ and photosynthetic capacity as well as electrical signaling depended on calcium channel activity. Use of an Arabidopsis respiratory burst oxidase homolog D (RBOHD) mutant (rbohD) as well as an RBOH inhibitor further suggested a cross-talk between ROS and electrical signaling. Our results suggest that higher plants evolved a complex rapid long-distance calcium-dependent electrical systemic signaling in response to local stimuli that regulates and optimizes the balance between PSII quantum efficiency and excess energy dissipation in the form of heat by means of NPQ.

12.
Plant Cell Environ ; 40(11): 2644-2662, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28555890

RESUMEN

Since its discovery over two decades ago as an important cell death regulator in Arabidopsis thaliana, the role of LESION SIMULATING DISEASE 1 (LSD1) has been studied intensively within both biotic and abiotic stress responses as well as with respect to plant fitness regulation. However, its molecular mode of action remains enigmatic. Here, we demonstrate that nucleo-cytoplasmic LSD1 interacts with a broad range of other proteins that are engaged in various molecular pathways such as ubiquitination, methylation, cell cycle control, gametogenesis, embryo development and cell wall formation. The interaction of LSD1 with these partners is dependent on redox status, as oxidative stress significantly changes the quantity and types of LSD1-formed complexes. Furthermore, we show that LSD1 regulates the number and size of leaf mesophyll cells and affects plant vegetative growth. Importantly, we also reveal that in addition to its function as a scaffold protein, LSD1 acts as a transcriptional regulator. Taken together, our results demonstrate that LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Recuento de Células , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidación-Reducción , Estrés Oxidativo , Regiones Promotoras Genéticas/genética , Unión Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína
13.
Plant Cell Physiol ; 57(7): 1495-1509, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27273581

RESUMEN

Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significance of PsbS in regulating heat emission from a whole leaf has never been verified before by direct measurement of foliar temperature under changing light intensity. To test its validity, we here investigated the foliar temperature changes on increasing and decreasing light intensity conditions (foliar temperature dynamics) using a high resolution thermal camera and a powerful adjustable light-emitting diode (LED) light source. First, we showed that light-dependent foliar temperature dynamics is correlated with Chl content in leaves of various plant species. Secondly, we compared the foliar temperature dynamics in Arabidopsis thaliana wild type, the PsbS null mutant npq4-1 and a PsbS-overexpressing transgenic line under different transpiration conditions with or without a photosynthesis inhibitor. We found no direct correlations between the NPQ level and the foliar temperature dynamics. Rather, differences in foliar temperature dynamics are primarily affected by stomatal aperture, and rapid foliar temperature increase during irradiation depends on the water status of the leaf. We conclude that PsbS is not directly involved in regulation of foliar temperature dynamics during excessive light energy episodes.


Asunto(s)
Proteínas de Plantas/metabolismo , Estomas de Plantas/fisiología , Plantas/metabolismo , Temperatura , Diurona/farmacología , Luz , Modelos Lineales , Modelos Biológicos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/efectos de la radiación , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/efectos de la radiación , Plantas/efectos de los fármacos , Plantas/efectos de la radiación
14.
Plant Cell Rep ; 35(3): 527-39, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26754794

RESUMEN

KEY MESSAGE: Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition. The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Biomasa , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Sequías , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Rastreo Diferencial de Calorimetría , Hidrolasas de Éster Carboxílico/genética , Pared Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie , Termogravimetría , Factores de Transcripción/genética
15.
Plant Cell Environ ; 38(2): 315-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24471507

RESUMEN

As obligate photoautotrophs, plants are inevitably exposed to ultraviolet (UV) radiation. Because of stratospheric ozone depletion, UV has become more and more dangerous to the biosphere. Therefore, it is important to understand UV perception and signal transduction in plants. In the present study, we show that lesion simulating disease 1 (LSD1) and enhanced disease susceptibility 1 (EDS1) are antagonistic regulators of UV-C-induced programmed cell death (PCD) in Arabidopsis thaliana. This regulatory dependence is manifested by a complex deregulation of photosynthesis, reactive oxygen species homeostasis, antioxidative enzyme activity and UV-responsive genes expression. We also prove that a UV-C radiation episode triggers apoptotic-like morphological changes within the mesophyll cells. Interestingly, chloroplasts are the first organelles that show features of UV-C-induced damage, which may indicate their primary role in PCD development. Moreover, we show that Arabidopsis Bax inhibitor 1 (AtBI1), which has been described as a negative regulator of plant PCD, is involved in LSD1-dependent cell death in response to UV-C. Our results imply that LSD1 and EDS1 regulate processes extinguishing excessive energy, reactive oxygen species formation and subsequent PCD in response to different stresses related to impaired electron transport.


Asunto(s)
Apoptosis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas de Unión al ADN/metabolismo , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Antioxidantes/metabolismo , Arabidopsis/enzimología , Arabidopsis/efectos de la radiación , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Unión al ADN/genética , Electrólitos/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Mutación , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Factores de Transcripción/genética
16.
Plant Cell Environ ; 38(7): 1275-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24943986

RESUMEN

The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Populus/genética , Sesquiterpenos/metabolismo , Catalasa/metabolismo , Pared Celular/metabolismo , Clorofila/metabolismo , Clorofila A , Hibridación Genética , Lignina/análisis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Populus/crecimiento & desarrollo , Populus/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Madera/genética , Madera/crecimiento & desarrollo , Madera/fisiología , Fitoalexinas
17.
J Exp Bot ; 66(11): 3325-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25969551

RESUMEN

In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Arabidopsis thaliana. They are distinguished by the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. One of them, CRK5, is an important component of the biochemical machinery involved in the regulation of essential physiological processes. Functional characterization of crk5 mutant plants showed their clear phenotype, manifested by impaired stomatal conductance and accelerated senescence. This phenotype correlated with accumulation of reactive oxygen species, higher foliar levels of ethylene and salicylic acid, and increased transcript abundance for genes associated with signalling pathways corresponding to these hormones. Moreover, the crk5 plants displayed enhanced cell death and oxidative damage in response to ultraviolet radiation. Complementation of CRK5 mutation managed to recover the wild-type phenotype, indicating an essential role of this gene in the regulation of growth, development, and acclimatory responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Muerte Celular , Cisteína/metabolismo , Etilenos/metabolismo , Genes Reporteros , Mutación , Estrés Oxidativo , Fenotipo , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo , Ácido Salicílico/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Rayos Ultravioleta
18.
J Exp Bot ; 66(21): 6679-95, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26385378

RESUMEN

Plants coordinate their responses to various biotic and abiotic stresses in order to optimize their developmental and acclimatory programmes. The ultimate response to an excessive amount of stress is local induction of cell death mechanisms. The death of certain cells can help to maintain tissue homeostasis and enable nutrient remobilization, thus increasing the survival chances of the whole organism in unfavourable environmental conditions. UV radiation is one of the environmental factors that negatively affects the photosynthetic process and triggers cell death. The aim of this work was to evaluate a possible role of the red/far-red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) and their interrelations during acclimatory responses to UV stress. We showed that UV-C treatment caused a disturbance in photosystem II and a deregulation of photosynthetic pigment content and antioxidant enzymes activities, followed by increased cell mortality rate in phyB and phyAB null mutants. We also propose a regulatory role of phyA and phyB in CO2 assimilation, non-photochemical quenching, reactive oxygen species accumulation and salicylic acid content. Taken together, our results suggest a novel role of phytochromes as putative regulators of cell death and acclimatory responses to UV.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Fitocromo A/genética , Fitocromo B/genética , Rayos Ultravioleta/efectos adversos , Aclimatación , Antioxidantes/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Mutación , Fitocromo A/metabolismo , Fitocromo B/metabolismo
19.
Plant Physiol ; 161(4): 1795-805, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23400705

RESUMEN

There is growing evidence that for a comprehensive insight into the function of plant genes, it is crucial to assess their functionalities under a wide range of conditions. In this study, we examined the role of lesion simulating disease1 (LSD1), enhanced disease susceptibility1 (EDS1), and phytoalexin deficient4 (PAD4) in the regulation of photosynthesis, water use efficiency, reactive oxygen species/hormonal homeostasis, and seed yield in Arabidopsis (Arabidopsis thaliana) grown in the laboratory and in the field. We demonstrate that the LSD1 null mutant (lsd1), which is known to exhibit a runaway cell death in nonpermissive conditions, proves to be more tolerant to combined drought and high-light stress than the wild type. Moreover, depending on growing conditions, it shows variations in water use efficiency, salicylic acid and hydrogen peroxide concentrations, photosystem II maximum efficiency, and transcription profiles. However, despite these changes, lsd1 demonstrates similar seed yield under all tested conditions. All of these traits depend on EDS1 and PAD4. The differences in the pathways prevailing in the lsd1 in various growing environments are manifested by the significantly smaller number of transcripts deregulated in the field compared with the laboratory, with only 43 commonly regulated genes. Our data indicate that LSD1, EDS1, and PAD4 participate in the regulation of various molecular and physiological processes that influence Arabidopsis fitness. On the basis of these results, we emphasize that the function of such important regulators as LSD1, EDS1, and PAD4 should be studied not only under stable laboratory conditions, but also in the environment abounding in multiple stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostasis , Fotosíntesis , Semillas/crecimiento & desarrollo , Transducción de Señal , Agua/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Hidrolasas de Éster Carboxílico/metabolismo , Análisis por Conglomerados , Proteínas de Unión al ADN/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Homeostasis/efectos de los fármacos , Homeostasis/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Luz , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Semillas/efectos de los fármacos , Semillas/metabolismo , Semillas/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Transcriptoma/efectos de la radiación
20.
Plant Cell Environ ; 36(4): 736-44, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23046215

RESUMEN

This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS- and SA-dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid-nucleus signal transduction, photorespiration, photoelectrochemical signalling and 'light memory' in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA).


Asunto(s)
Aclimatación , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Muerte Celular , Núcleo Celular/metabolismo , Respiración de la Célula , Homeostasis , Interacciones Huésped-Patógeno , Luz , Modelos Biológicos , Fotosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/inmunología , Plantas/metabolismo , Plantas/efectos de la radiación , Plastidios/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA