Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38168672

RESUMEN

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Asunto(s)
Investigación Biomédica , Contención de Riesgos Biológicos , Virología , Humanos , COVID-19 , Estados Unidos , Virus , Investigación Biomédica/normas
2.
Immunity ; 44(4): 715-8, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27096311

RESUMEN

In this issue of Immunity, Kweon and colleagues (2016) report a novel antiviral cocktail approach to specifically reduce the virome component of the intestinal microbiota. Using this strategy, they generate compelling evidence that the virome provides protection from gut inflammatory conditions.


Asunto(s)
Inflamación/inmunología , Microbiota , Microbioma Gastrointestinal , Humanos
3.
PLoS Pathog ; 17(3): e1009402, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705489

RESUMEN

Interferons (IFNs) are key controllers of viral replication, with intact IFN responses suppressing virus growth and spread. Using the murine norovirus (MNoV) system, we show that IFNs exert selective pressure to limit the pathogenic evolutionary potential of this enteric virus. In animals lacking type I IFN signaling, the nonlethal MNoV strain CR6 rapidly acquired enhanced virulence via conversion of a single nucleotide. This nucleotide change resulted in amino acid substitution F514I in the viral capsid, which led to >10,000-fold higher replication in systemic organs including the brain. Pathogenicity was mediated by enhanced recruitment and infection of intestinal myeloid cells and increased extraintestinal dissemination of virus. Interestingly, the trade-off for this mutation was reduced fitness in an IFN-competent host, in which CR6 bearing F514I exhibited decreased intestinal replication and shedding. In an immunodeficient context, a spontaneous amino acid change can thus convert a relatively avirulent viral strain into a lethal pathogen.


Asunto(s)
Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Norovirus/genética , Norovirus/patogenicidad , Virulencia/genética , Animales , Infecciones por Caliciviridae/genética , Infecciones por Caliciviridae/inmunología , Aptitud Genética/genética , Inmunidad Innata/inmunología , Ratones , Norovirus/inmunología , Polimorfismo de Nucleótido Simple , Virulencia/inmunología , Replicación Viral
5.
J Virol ; 89(11): 5756-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25787285

RESUMEN

Since 1996, there have been at least six human norovirus pandemics. All of the pandemic strains are genetically related, segregating in the genogroup II, genotype 4 (GII.4) cluster within the Norovirus genus. Evidence indicates that these strains are closely related but antigenically distinct, supporting immune-driven viral evolution. Thus, norovirus vaccines will likely require periodic reformulation to protect from newly emergent strains. A major obstacle is that the reservoir of emergent strains is unknown. Noroviruses display tight species specificity and there is no evidence supporting zoonotic transmission, so an animal reservoir is considered unlikely. Moreover, available data indicate minimal viral diversity in most natural human infections. In this Gem, we discuss the widely speculated idea that chronically infected immunocompromised individuals are norovirus reservoirs and provide a rationale for the theory that elderly and malnourished hosts may also represent norovirus reservoirs.


Asunto(s)
Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Reservorios de Enfermedades , Norovirus/aislamiento & purificación , Portador Sano/epidemiología , Portador Sano/virología , Variación Genética , Humanos , Huésped Inmunocomprometido , Norovirus/clasificación , Norovirus/genética
6.
J Virol ; 90(6): 2858-67, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26719276

RESUMEN

UNLABELLED: Human noroviruses are a leading cause of gastroenteritis across the globe, but the pathogenic mechanisms responsible for disease are not well established. The availability of a murine norovirus model system provides the opportunity to elucidate viral and host determinants of virulence in a natural host. For example, previous studies have revealed that the protruding domain of the murine norovirus capsid protein VP1, specifically residue 296 of VP1, regulates virulent infection. We identified a panel of nonsynonymous mutations in the open reading frame 2 (ORF2) gene encoding VP1 that arose in persistently infected mice and tested whether these mutations conferred phenotypic changes to viral replication and virulence. Consistent with previous studies, we demonstrate that a glutamic acid at position 296 results in attenuation. For the first time, we also demonstrate that a lysine at this position is sufficient to confer virulence on an otherwise attenuated murine norovirus strain. Moreover, our studies reveal a direct correlation between the efficiency of viral replication in B cells and virulence. These data are especially striking because mutations causing reduced B cell replication and attenuation had minimal effects on the ability of the virus to replicate in macrophages. Thus, norovirus infection of B cells may directly contribute to disease outcome. IMPORTANCE: Human noroviruses are a major global cause of disease, yet we know very little about their pathogenic mechanisms. The availability of a murine norovirus model system facilitates investigation of noroviruses in a natural host organism and the identification of viral and host determinants of pathogenesis. We have identified a panel of mutations arising in the viral capsid protein VP1 during persistent infection of mice. Our data reveal that the protruding domain of VP1 regulates the ability of the virus to replicate in B cells, and this directly correlates with virulence. Importantly, mutations impairing B cell infection had minimal effects on macrophage infection, revealing a potentially critical role for B cell infection in norovirus pathogenesis.


Asunto(s)
Linfocitos B/virología , Proteínas de la Cápside/metabolismo , Interacciones Huésped-Patógeno , Norovirus/fisiología , Norovirus/patogenicidad , Factores de Virulencia/metabolismo , Sustitución de Aminoácidos , Estructuras Animales/virología , Animales , Peso Corporal , Infecciones por Caliciviridae/patología , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Modelos Animales de Enfermedad , Femenino , Macrófagos/virología , Masculino , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Análisis de Supervivencia , Carga Viral , Virulencia , Factores de Virulencia/genética , Replicación Viral
7.
J Med Virol ; 88(11): 1837-43, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27110852

RESUMEN

Noroviruses constitute a family of ubiquitous and highly efficient human pathogens. In spite of decades of dedicated research, human noroviruses remain a major cause of gastroenteritis and severe diarrheal disease around the world. Recent findings have begun to unravel the complex mechanisms that regulate norovirus pathogenesis and persistent infection, including the important interplay between the virus, the host immune system, and commensal bacteria. Herein, we will summarize recent research developments regarding norovirus cell tropism, the use of M cells, and commensal bacteria to facilitate norovirus infection, and virus, host, and bacterial determinants of persistent norovirus infections. J. Med. Virol. 88:1837-1843, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Infecciones por Caliciviridae/virología , Enterocitos/virología , Gastroenteritis/virología , Norovirus/patogenicidad , Animales , Antivirales/uso terapéutico , Infecciones por Caliciviridae/tratamiento farmacológico , Infecciones por Caliciviridae/microbiología , Técnicas de Cultivo de Célula , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Intestinos/virología , Ratones , Norovirus/fisiología , Simbiosis , Tropismo Viral , Replicación Viral
8.
J Pathol ; 235(2): 206-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25312350

RESUMEN

Norovirus infection in humans typically results in acute gastroenteritis but may also occur in many animal species. Noroviruses are recognized as one of the most common causes of acute gastroenteritis in the world, being responsible for almost 20% of all cases. Despite their prevalence and impact, our knowledge of the norovirus life cycle and the pathological processes associated with norovirus-induced disease is limited. Whilst infection of the intestine is the norm, extraintestinal spread and associated pathologies have also been described. In addition, long-term chronic infections are now recognized as a significant cause of morbidity and mortality in the immunocompromised. This review aims to summarize the current state of knowledge with respect to norovirus pathology and the underlying mechanisms that have been characterized to date.


Asunto(s)
Infecciones por Caliciviridae/patología , Infecciones por Caliciviridae/virología , Gastroenteritis/patología , Gastroenteritis/virología , Norovirus/patogenicidad , Patología Molecular/métodos , Animales , Biopsia , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/mortalidad , Gastroenteritis/inmunología , Gastroenteritis/mortalidad , Genotipo , Interacciones Huésped-Patógeno , Humanos , Norovirus/genética , Norovirus/inmunología , Valor Predictivo de las Pruebas , Pronóstico , Tropismo Viral , Virología/métodos , Virulencia
9.
PLoS Pathog ; 9(9): e1003592, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039576

RESUMEN

Whether or not primary norovirus infections induce protective immunity has become a controversial issue, potentially confounded by the comparison of data from genetically distinct norovirus strains. Early human volunteer studies performed with a norovirus-positive inoculum initially led to the conclusion that primary infection does not generate long-term, protective immunity. More recently though, the epidemiological pattern of norovirus pandemics has led to the extrapolation that primary norovirus infection induces herd immunity. While these are seemingly discordant observations, they may in fact reflect virus strain-, cluster-, or genogroup-specific differences in protective immunity induction. Here, we report that highly genetically related intra-cluster murine norovirus strains differ dramatically in their ability to induce a protective immune response: Primary MNV-3 infection induced robust and cross-reactive protection, whereas primary MNV-1 infection induced modest homotypic and no heterotypic protection. In addition to this fundamental observation that intra-cluster norovirus strains display remarkable differences in protective immunity induction, we report three additional important observations relevant to norovirus:host interactions. First, antibody and CD4⁺ T cells are essential to controlling secondary norovirus infections. Second, the viral minor structural protein VP2 regulates the maturation of antigen presenting cells and protective immunity induction in a virus strain-specific manner, pointing to a mechanism by which MNV-1 may prevent the stimulation of memory immune responses. Third, VF1-mediated regulation of cytokine induction also correlates with protective immunity induction. Thus, two highly genetically-related norovirus strains displayed striking differences in induction of protective immune responses, strongly suggesting that the interpretation of norovirus immunity and vaccine studies must consider potential virus strain-specific effects. Moreover, we have identified immune (antibody and CD4⁺ T cells) and viral (VP2 and possibly VF1) correlates of norovirus protective immunity. These findings have significant implications for our understanding of norovirus immunity during primary infections as well as the development of new norovirus vaccines.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por Caliciviridae/inmunología , Proteínas de la Cápside/inmunología , Memoria Inmunológica , Norovirus/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Infecciones por Caliciviridae/genética , Infecciones por Caliciviridae/prevención & control , Proteínas de la Cápside/genética , Línea Celular , Citocinas/genética , Citocinas/inmunología , Humanos , Ratones , Ratones Noqueados , Norovirus/genética , Especificidad de la Especie , Vacunas Virales/genética , Vacunas Virales/inmunología
10.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746153

RESUMEN

Noroviruses are the leading global cause of acute gastroenteritis, responsible for 685 million annual cases. While all age groups are susceptible to noroviruses, children are vulnerable to more severe infections than adults, underscored by 200 million pediatric cases and up to 200,000 deaths in children annually. Understanding the basis for the increased vulnerability of young hosts is critical to developing effective treatments. The pathogenic outcome of any enteric virus infection is governed by a complex interplay between the virus, intestinal microbiota, and host immune factors. A central mediator in these complex relationships are host- and microbiota-derived metabolites. Noroviruses bind a specific class of metabolites, bile acids, which are produced by the host and then modified by commensal bacterial enzymes. Paradoxically, bile acids can have both proviral and antiviral roles during norovirus infections. Considering these opposing effects, the microbiota-regulated balance of the bile acid pool may be a key determinant of the pathogenic outcome of a norovirus infection. The bile acid pool in newborns is unique due to immaturity of host metabolic pathways and developing gut microbiota, which could underlie the vulnerability of these hosts to severe norovirus infections. Supporting this concept, we demonstrate herein that microbiota and their bile acid metabolites protect from severe norovirus diarrhea whereas host-derived bile acids promote disease. Remarkably, we also report that maternal bile acid metabolism determines neonatal susceptibility to norovirus diarrhea during breastfeeding by delivering proviral bile acids to the newborn. Finally, directed targeting of maternal and neonatal bile acid metabolism can protect the neonatal host from norovirus disease. Altogether, these data support the conclusion that metabolic immaturity in newborns and ingestion of proviral maternal metabolites in breast milk are the central determinants of heightened neonatal vulnerability to norovirus disease.

11.
Cell Host Microbe ; 32(9): 1488-1501.e5, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39214086

RESUMEN

The pathogenic outcome of enteric virus infections is governed by a complex interplay between the virus, intestinal microbiota, and host immune factors, with metabolites serving as a key mediator. Noroviruses bind bile acid metabolites, which are produced by the host and then modified by commensal bacteria. Paradoxically, bile acids can have both proviral and antiviral roles during norovirus infections. Working in an infant mouse model of norovirus infection, we demonstrate that microbiota and their bile acid metabolites protect from norovirus diarrhea, whereas host bile acids promote disease. We also find that maternal bile acid metabolism determines the susceptibility of newborn mice to norovirus diarrhea during breastfeeding. Finally, targeting maternal and neonatal bile acid metabolism can protect newborn mice from norovirus disease. In summary, neonatal metabolic immaturity and breastmilk bile acids are central determinants of heightened newborn vulnerability to norovirus disease.


Asunto(s)
Animales Recién Nacidos , Ácidos y Sales Biliares , Infecciones por Caliciviridae , Diarrea , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Leche Humana , Norovirus , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Infecciones por Caliciviridae/metabolismo , Infecciones por Caliciviridae/virología , Leche Humana/virología , Leche Humana/metabolismo , Diarrea/virología , Diarrea/metabolismo , Femenino , Humanos , Ratones Endogámicos C57BL
12.
Cell Host Microbe ; 32(10): 1805-1821.e10, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39293437

RESUMEN

Microbiota and feeding modes influence the susceptibility of premature newborns to necrotizing enterocolitis (NEC) through mechanisms that remain unknown. Here, we show that microbiota colonization facilitated by breastmilk feeding promotes NOD-like receptor family CARD domain containing 5 (Nlrc5) gene expression in mouse intestinal epithelial cells (IECs). Notably, inducible knockout of the Nlrc5 gene in IECs predisposes neonatal mice to NEC-like injury in the small intestine upon viral inflammation in an NK1.1+ cell-dependent manner. By contrast, formula feeding enhances neonatal gut colonization with environment-derived tilivalline-producing Klebsiella spp. Remarkably, tilivalline disrupts microbiota-activated STAT1 signaling that controls Nlrc5 gene expression in IECs through a PPAR-γ-mediated mechanism. Consequently, this dysregulation hinders the resistance of neonatal intestinal epithelium to self-NK1.1+ cell cytotoxicity upon virus infection/colonization, promoting NEC development. Together, we discover the underappreciated role of intestinal microbiota colonization in shaping a disease tolerance program to viral inflammation and elucidate the mechanisms impacting NEC development in neonates.


Asunto(s)
Animales Recién Nacidos , Enterocolitis Necrotizante , Microbioma Gastrointestinal , Mucosa Intestinal , Factor de Transcripción STAT1 , Animales , Enterocolitis Necrotizante/microbiología , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/virología , Factor de Transcripción STAT1/metabolismo , Ratones , Mucosa Intestinal/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones Noqueados , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Transducción de Señal , Células Epiteliales/microbiología , Células Epiteliales/virología , Células Epiteliales/inmunología , Humanos , Ratones Endogámicos C57BL
13.
mBio ; 14(4): e0279122, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37260237

RESUMEN

As the largest mucosal surface, the gastrointestinal (GI) tract plays a key role in protecting the host against pathogen infections. It is a first line of defense against enteric viruses and must act to control infection while remaining tolerant to the high commensal bacteria load found within the GI tract. The GI tract can be divided into six main sections (stomach, duodenum, jejunum, ileum, colon, and rectum), and enteric pathogens have evolved to infect distinct parts of the GI tract. The intestinal epithelial cells (IECs) lining the GI tract are immune competent and can counteract these infections through their intrinsic immune response. Type I and type III interferons (IFNs) are antiviral cytokines that play a key role in protecting IECs against viruses with the type III IFN being the most important. Recent work has shown that IECs derived from the different sections of the GI tract display a unique expression of pattern recognition receptors used to fight pathogen infections. Additionally, it was also shown that these cells show a section-specific response to enteric viruses. This mini-review will discuss the molecular strategies used by IECs to detect and combat enteric viruses highlighting the differences existing along the entero-caudal axis of the GI tract. We will provide a perspective on how these spatially controlled mechanisms may influence virus tropism and discuss how the intestinal micro-environment may further shape the response of IECs to virus infections.


Asunto(s)
Tracto Gastrointestinal , Interacciones Huésped-Patógeno , Citocinas/metabolismo , Células Epiteliales/metabolismo , Antivirales/metabolismo , Interferón lambda
14.
Nat Microbiol ; 8(6): 1095-1107, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188813

RESUMEN

Norovirus (NoV) is the leading global cause of viral gastroenteritis. Young children bear the highest burden of disease and play a key role in viral transmission throughout the population. However, which host factors contribute to age-associated variability in NoV severity and shedding are not well-defined. The murine NoV (MNoV) strain CR6 causes persistent infection in adult mice and targets intestinal tuft cells. Here we find that natural transmission of CR6 from infected dams occurred only in juvenile mice. Direct oral CR6 inoculation of wild-type neonatal mice led to accumulation of viral RNA in the ileum and prolonged shedding in the stool that was replication-independent. This viral exposure induced both innate and adaptive immune responses including interferon-stimulated gene expression and MNoV-specific antibody responses. Interestingly, viral uptake depended on passive ileal absorption of luminal virus, a process blocked by cortisone acetate administration, which prevented ileal viral RNA accumulation. Neonates lacking interferon signalling in haematopoietic cells were susceptible to productive infection, viral dissemination and lethality, which depended on the canonical MNoV receptor CD300LF. Together, our findings reveal developmentally associated aspects of persistent MNoV infection, including distinct tissue and cellular tropism, mechanisms of interferon regulation and severity of infection in the absence of interferon signalling. These emphasize the importance of defining viral pathogenesis phenotypes across the developmental spectrum and highlight passive viral uptake as an important contributor to enteric infections in early life.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Ratones , Animales , Interferones , Intestinos , Intestino Delgado/metabolismo
15.
Lab Anim (NY) ; 52(6): 119-129, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142696

RESUMEN

Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe, with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models. The development of the murine norovirus (MNV) model nearly two decades ago has facilitated progress in understanding host-norovirus interactions and norovirus strain variability. However, MNV strains tested thus far either do not cause intestinal disease or were isolated from extraintestinal tissue, raising concerns about translatability of research findings to human norovirus disease. Consequently, the field lacks a strong model of norovirus gastroenteritis. Here we provide a comprehensive characterization of a new small animal model system for the norovirus field that overcomes prior weaknesses. Specifically, we demonstrate that the WU23 MNV strain isolated from a mouse naturally presenting with diarrhea causes a transient reduction in weight gain and acute self-resolving diarrhea in neonatal mice of several inbred mouse lines. Moreover, our findings reveal that norovirus-induced diarrhea is associated with infection of subepithelial cells in the small intestine and systemic spread. Finally, type I interferons (IFNs) are critical to protect hosts from norovirus-induced intestinal disease whereas type III IFNs exacerbate diarrhea. This latter finding is consistent with other emerging data implicating type III IFNs in the exacerbation of some viral diseases. This new model system should enable a detailed investigation of norovirus disease mechanisms.


Asunto(s)
Norovirus , Niño , Ratones , Animales , Humanos , Preescolar , Norovirus/genética , Animales Recién Nacidos , Diarrea , Intestino Delgado , Modelos Animales de Enfermedad
16.
Curr Protoc ; 3(7): e828, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37478303

RESUMEN

Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. Viruses in this family replicate in the intestine and are transmitted by the fecal-oral route. MNV is related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Given the technical challenges in studying human norovirus, MNV is often used to study mechanisms in norovirus biology since it combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Adding to our previous protocol collection, here we describe additional techniques that have since been developed to study MNV biology. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Indirect method for measuring cell cytotoxicity and antiviral activity Basic Protocol 2: Measuring murine norovirus genome titers by RT-qPCR Support Protocol 1: Preparation of standard Basic Protocol 3: Generation of recombinant murine norovirus with minimal passaging Basic Protocol 4: Generation of recombinant murine norovirus via circular polymerase extension reaction (CPER) Basic Protocol 5: Expression of norovirus NS1-2 in insect cell suspension cultures using a recombinant baculovirus Support Protocol 2: Isotope labelling of norovirus NS1-2 in insect cells Support Protocol 3: Purification of the norovirus NS1-2 protein Support Protocol 4: Expression of norovirus NS1-2 in mammalian cells by transduction with a recombinant baculovirus Basic Protocol 6: Infection of enteroids in transwell inserts with murine norovirus Support Protocol 5: Preparation of conditioned medium for enteroids culture Support Protocol 6: Isolation of crypts for enteroids generation Support Protocol 7: Enteroid culture passaging and maintenance Basic Protocol 7: Quantification of murine norovirus-induced diarrhea using neonatal mouse infections Alternate Protocol 1: Intragastric inoculation of neonatal mice Alternate Protocol 2: Scoring colon contents.


Asunto(s)
Caliciviridae , Norovirus , Ratones , Humanos , Animales , Norovirus/genética , Antivirales/farmacología , Caliciviridae/genética , Genoma , Mamíferos/genética
18.
Genome Med ; 14(1): 10, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086559

RESUMEN

BACKGROUND: The COVID-19 pandemic has resulted in 275 million infections and 5.4 million deaths as of December 2021. While effective vaccines are being administered globally, there is still a great need for antiviral therapies as antigenically novel SARS-CoV-2 variants continue to emerge across the globe. Viruses require host factors at every step in their life cycle, representing a rich pool of candidate targets for antiviral drug design. METHODS: To identify host factors that promote SARS-CoV-2 infection with potential for broad-spectrum activity across the coronavirus family, we performed genome-scale CRISPR knockout screens in two cell lines (Vero E6 and HEK293T ectopically expressing ACE2) with SARS-CoV-2 and the common cold-causing human coronavirus OC43. Gene knockdown, CRISPR knockout, and small molecule testing in Vero, HEK293, and human small airway epithelial cells were used to verify our findings. RESULTS: While we identified multiple genes and functional pathways that have been previously reported to promote human coronavirus replication, we also identified a substantial number of novel genes and pathways. The website https://sarscrisprscreens.epi.ufl.edu/ was created to allow visualization and comparison of SARS-CoV2 CRISPR screens in a uniformly analyzed way. Of note, host factors involved in cell cycle regulation were enriched in our screens as were several key components of the programmed mRNA decay pathway. The role of EDC4 and XRN1 in coronavirus replication in human small airway epithelial cells was verified. Finally, we identified novel candidate antiviral compounds targeting a number of factors revealed by our screens. CONCLUSIONS: Overall, our studies substantiate and expand the growing body of literature focused on understanding key human coronavirus-host cell interactions and exploit that knowledge for rational antiviral drug development.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Viral , Interacciones Huésped-Patógeno/genética , SARS-CoV-2/genética , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/patología , COVID-19/virología , Chlorocebus aethiops , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Edición Génica/métodos , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/genética , Proteínas/metabolismo , Interferencia de ARN , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Células Vero , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19
19.
mBio ; 13(2): e0017522, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35404121

RESUMEN

Human norovirus (HNoV) is a global health and socioeconomic burden, estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3 days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next, we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+, memory-switched CD27+ IgD-, memory-unswitched CD27+ IgD+, and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar, changes in the B cell subset distribution upon infection were observed, which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly, primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro, which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised, the elderly, and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover, HNoV does not elicit lifelong immunity as repeat infections are common, presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity, we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood, spleen, and lymph node specimens, while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1, we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Anciano , Humanos , Inmunoglobulina D , Activación de Linfocitos , Norovirus/fisiología
20.
Front Immunol ; 13: 1043746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389732

RESUMEN

Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections in people, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models. We recently demonstrated that wild-type neonatal mice are susceptible to murine norovirus (MNV)-induced acute self-resolving diarrhea in a time course mirroring human norovirus disease. Using this robust pathogenesis model system, we demonstrate that virulence is regulated by the responsiveness of the viral capsid to environmental cues that trigger contraction of the VP1 protruding (P) domain onto the particle shell, thus enhancing receptor binding and infectivity. The capacity of a given MNV strain to undergo this contraction positively correlates with infection of cells expressing low abundance of the virus receptor CD300lf, supporting a model whereby virion contraction triggers infection of CD300lflo cell types that are responsible for diarrhea induction. These findings directly link environmentally-influenced biophysical features with norovirus disease severity.


Asunto(s)
Infecciones por Caliciviridae , Norovirus , Niño , Humanos , Ratones , Animales , Preescolar , Norovirus/metabolismo , Virión/metabolismo , Receptores Virales/metabolismo , Diarrea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA