Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7982): 329-338, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794186

RESUMEN

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Asunto(s)
Bancos de Muestras Biológicas , Proteínas Sanguíneas , Bases de Datos Factuales , Genómica , Salud , Proteoma , Proteómica , Humanos , Sistema del Grupo Sanguíneo ABO/genética , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/genética , COVID-19/genética , Descubrimiento de Drogas , Epistasis Genética , Fucosiltransferasas/metabolismo , Predisposición Genética a la Enfermedad , Plasma/química , Proproteína Convertasa 9/metabolismo , Proteoma/análisis , Proteoma/genética , Asociación entre el Sector Público-Privado , Sitios de Carácter Cuantitativo , Reino Unido , Galactósido 2-alfa-L-Fucosiltransferasa
2.
Mol Psychiatry ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849517

RESUMEN

Major Depressive Disorder (MDD) is a common, frequently chronic condition characterized by substantial molecular alterations and pathway dysregulations. Single metabolite and targeted metabolomics platforms have revealed several metabolic alterations in depression, including energy metabolism, neurotransmission, and lipid metabolism. More comprehensive coverage of the metabolome is needed to further specify metabolic dysregulations in depression and reveal previously untargeted mechanisms. Here, we measured 820 metabolites using the metabolome-wide Metabolon platform in 2770 subjects from a large Dutch clinical cohort with extensive clinical phenotyping (1101 current MDD, 868 remitted MDD, 801 healthy controls) at baseline, which were repeated in 1805 subjects at 6-year follow up (327 current MDD, 1045 remitted MDD, 433 healthy controls). MDD diagnosis was based on DSM-IV psychiatric interviews. Depression severity was measured with the Inventory of Depressive Symptomatology Self-report. Associations between metabolites and MDD status and depression severity were assessed at baseline and at 6-year follow-up. At baseline, 139 and 126 metabolites were associated with current MDD status and depression severity, respectively, with 79 overlapping metabolites. Adding body mass index and lipid-lowering medication to the models changed results only marginally. Among the overlapping metabolites, 34 were confirmed in internal replication analyses using 6-year follow-up data. Downregulated metabolites were enriched with long-chain monounsaturated (P = 6.7e-07) and saturated (P = 3.2e-05) fatty acids; upregulated metabolites were enriched with lysophospholipids (P = 3.4e-4). Mendelian randomization analyses using genetic instruments for metabolites (N = 14,000) and MDD (N = 800,000) showed that genetically predicted higher levels of the lysophospholipid 1-linoleoyl-GPE (18:2) were associated with greater risk of depression. The identified metabolome-wide profile of depression indicated altered lipid metabolism with downregulation of long-chain fatty acids and upregulation of lysophospholipids, for which causal involvement was suggested using genetic tools. This metabolomics signature offers a window on depression pathophysiology and a potential access point for the development of novel therapeutic approaches.

3.
Diabetologia ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349772

RESUMEN

AIMS/HYPOTHESIS: Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and type 2 diabetes. METHODS: As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consortium, 3000 plasma samples were measured with the Biocrates AbsoluteIDQ p150 Kit and Metabolon analytics. A total of 911 metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statistical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively. RESULTS: In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA1c progression rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate [fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially had a causal role in the development of type 2 diabetes. CONCLUSIONS/INTERPRETATION: Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabolites, significantly associated with prediabetes and diabetes, that mediate the effect of diabetes from baseline to follow-up (18 and 48 months). Causal inference using genetic variants shows the role of lipid metabolism and n-3 fatty acids as being causal for metabolite-to-type 2 diabetes whereas the sum of hexoses is causal for type 2 diabetes-to-metabolite. Identified metabolite markers are useful for stratifying individuals based on their risk progression and should enable targeted interventions.

4.
Hum Mol Genet ; 31(19): 3367-3376, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34718574

RESUMEN

In the era of personalized medicine with more and more patient-specific targeted therapies being used, we need reliable, dynamic, faster and sensitive biomarkers both to track the causes of disease and to develop and evolve therapies during the course of treatment. Metabolomics recently has shown substantial evidence to support its emerging role in disease diagnosis and prognosis. Aside from biomarkers and development of therapies, it is also an important goal to understand the involvement of mitochondrial DNA (mtDNA) in metabolic regulation, aging and disease development. Somatic mutations of the mitochondrial genome are also heavily implicated in age-related disease and aging. The general hypothesis is that an alteration in the concentration of metabolite profiles (possibly conveyed by lifestyle and environmental factors) influences the increase of mutation rate in the mtDNA and thereby contributes to a range of pathophysiological alterations observed in complex diseases. We performed an inverted mitochondrial genome-wide association analysis between mitochondrial nucleotide variants (mtSNVs) and concentration of metabolites. We used 151 metabolites and the whole sequenced mitochondrial genome from 2718 individuals to identify the genetic variants associated with metabolite profiles. Because of the high coverage, next-generation sequencing-based analysis of the mitochondrial genome allows for an accurate detection of mitochondrial heteroplasmy and for the identification of variants associated with the metabolome. The strongest association was found for mt715G > A located in the MT-12SrRNA with the metabolite ratio of C2/C10:1 (P-value = 6.82*10-09, ß = 0.909). The second most significant mtSNV was found for mt3714A > G located in the MT-ND1 with the metabolite ratio of phosphatidylcholine (PC) ae C42:5/PC ae C44:5 (P-value = 1.02*10-08, ß = 3.631). A large number of significant metabolite ratios were observed involving PC aa C36:6 and the variant mt10689G > A, located in the MT-ND4L gene. These results show an important interconnection between mitochondria and metabolite concentrations. Considering that some of the significant metabolites found in this study have been previously related to complex diseases, such as neurological disorders and metabolic conditions, these associations found here might play a crucial role for further investigations of such complex diseases. Understanding the mechanisms that control human health and disease, in particular, the role of genetic predispositions and their interaction with environmental factors is a prerequisite for the development of safe and efficient therapies for complex disorders.


Asunto(s)
Estudio de Asociación del Genoma Completo , Metabolómica , Biomarcadores/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Metabolómica/métodos , Mitocondrias/genética , Mitocondrias/metabolismo , Nucleótidos/metabolismo , Fosfatidilcolinas/metabolismo
5.
Cardiovasc Diabetol ; 23(1): 199, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867314

RESUMEN

BACKGROUND: Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans. METHODS: Metformin-specific metabolic changes were initially identified by comparing metformin-treated diabetic mice (MET) with vehicle-treated db/db mice (VG). These findings were then assessed in two human cohorts (KORA and QBB) and a longitudinal KORA study of metformin-naïve patients with Type 2 Diabetes (T2D). We also compared MET with db/db mice on combination therapy (SGLT2i + MET). Metabolic profiling analyzed 716 metabolites from plasma, liver, and kidney tissues post-treatment, using linear regression and Bonferroni correction for statistical analysis, complemented by pathway analyses to explore the pathophysiological implications. RESULTS: Metformin monotherapy significantly upregulated TCA cycle intermediates such as malate, fumarate, and α-ketoglutarate (α-KG) in plasma, and anaplerotic substrates including hepatic glutamate and renal 2-hydroxyglutarate (2-HG) in diabetic mice. Downregulated hepatic taurine was also observed. The addition of SGLT2i, however, reversed these effects, such as downregulating circulating malate and α-KG, and hepatic glutamate and renal 2-HG, but upregulated hepatic taurine. In human T2D patients on metformin therapy, significant systemic alterations in metabolites were observed, including increased malate but decreased citrulline. The bidirectional modulation of TCA cycle intermediates in mice influenced key anaplerotic pathways linked to glutaminolysis, tumorigenesis, immune regulation, and antioxidative responses. CONCLUSION: This study elucidates the specific metabolic consequences of metformin and SGLT2i on the TCA cycle, reflecting potential impacts on the immune system. Metformin shows promise for its anti-inflammatory properties, while the addition of SGLT2i may provide liver protection in conditions like metabolic dysfunction-associated steatotic liver disease (MASLD). These observations underscore the importance of personalized treatment strategies.


Asunto(s)
Ciclo del Ácido Cítrico , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Riñón , Hígado , Metformina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Metformina/farmacología , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Humanos , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Femenino , Quimioterapia Combinada , Ratones Endogámicos C57BL , Metabolómica , Biomarcadores/sangre , Persona de Mediana Edad , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Estudios Longitudinales , Ratones , Anciano , Resultado del Tratamiento
6.
Mol Psychiatry ; 28(9): 3874-3887, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37495887

RESUMEN

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.


Asunto(s)
Depresión , Espectrometría de Masas en Tándem , Humanos , Depresión/metabolismo , Dieta , Metaboloma/genética , Vitamina A/metabolismo , Hipuratos , Metabolómica/métodos
7.
Alzheimers Dement ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39439201

RESUMEN

BACKGROUND: Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). Although metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. METHODS: We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. RESULTS: Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. DISCUSSION: Our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP. HIGHLIGHTS: First high-throughput metabolic comparison of Alzheimer's diesease (AD) versus progressive supranuclear palsy (PSP) in brain tissue. Cerebellar cortex (CER) shows substantial AD-related metabolic changes, despite limited proteinopathy. AD impacts both CER and temporal cortex (TCX); PSP's changes are primarily in CER. AD and PSP share metabolic alterations despite major pathological differences.

8.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33063116

RESUMEN

Least absolute shrinkage and selection operator (LASSO) regression is often applied to select the most promising set of single nucleotide polymorphisms (SNPs) associated with a molecular phenotype of interest. While the penalization parameter λ restricts the number of selected SNPs and the potential model overfitting, the least-squares loss function of standard LASSO regression translates into a strong dependence of statistical results on a small number of individuals with phenotypes or genotypes divergent from the majority of the study population-typically comprised of outliers and high-leverage observations. Robust methods have been developed to constrain the influence of divergent observations and generate statistical results that apply to the bulk of study data, but they have rarely been applied to genetic association studies. In this article, we review, for newcomers to the field of robust statistics, a novel version of standard LASSO that utilizes the Huber loss function. We conduct comprehensive simulations and analyze real protein, metabolite, mRNA expression and genotype data to compare the stability of penalization, the cross-iteration concordance of the model, the false-positive and true-positive rates and the prediction accuracy of standard and robust Huber-LASSO. Although the two methods showed controlled false-positive rates ≤2.1% and similar true-positive rates, robust Huber-LASSO outperformed standard LASSO in the accuracy of predicted protein, metabolite and gene expression levels using individual SNP data. The conducted simulations and real-data analyses show that robust Huber-LASSO represents a valuable alternative to standard LASSO in genetic studies of molecular phenotypes.


Asunto(s)
Simulación por Computador , Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica , Estudios de Asociación Genética , Genotipo , Polimorfismo de Nucleótido Simple , Humanos
9.
Hum Mol Genet ; 29(5): 864-875, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31960908

RESUMEN

Saliva, as a biofluid, is inexpensive and non-invasive to obtain, and provides a vital tool to investigate oral health and its interaction with systemic health conditions. There is growing interest in salivary biomarkers for systemic diseases, notably cardiovascular disease. Whereas hundreds of genetic loci have been shown to be involved in the regulation of blood metabolites, leading to significant insights into the pathogenesis of complex human diseases, little is known about the impact of host genetics on salivary metabolites. Here we report the first genome-wide association study exploring 476 salivary metabolites in 1419 subjects from the TwinsUK cohort (discovery phase), followed by replication in the Study of Health in Pomerania (SHIP-2) cohort. A total of 14 distinct locus-metabolite associations were identified in the discovery phase, most of which were replicated in SHIP-2. While only a limited number of the loci that are known to regulate blood metabolites were also associated with salivary metabolites in our study, we identified several novel saliva-specific locus-metabolite associations, including associations for the AGMAT (with the metabolites 4-guanidinobutanoate and beta-guanidinopropanoate), ATP13A5 (with the metabolite creatinine) and DPYS (with the metabolites 3-ureidopropionate and 3-ureidoisobutyrate) loci. Our study suggests that there may be regulatory pathways of particular relevance to the salivary metabolome. In addition, some of our findings may have clinical significance, such as the utility of the pyrimidine (uracil) degradation metabolites in predicting 5-fluorouracil toxicity and the role of the agmatine pathway metabolites as biomarkers of oral health.


Asunto(s)
Biomarcadores/análisis , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Metaboloma , Polimorfismo de Nucleótido Simple , Saliva/química , Saliva/metabolismo , Estudios de Cohortes , Biología Computacional , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad
10.
Brain Behav Immun ; 102: 42-52, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35131442

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a highly heterogenous disease, both in terms of clinical profiles and pathobiological alterations. Recently, immunometabolic dysregulations were shown to be correlated with atypical, energy-related symptoms but less so with the Melancholic or Anxious distress symptom dimensions of depression in The Netherlands Study of Depression and Anxiety (NESDA) study. In this study, we aimed to replicate these immunometabolic associations and to characterize the metabolomic correlates of each of the three MDD dimensions. METHODS: Using three clinical rating scales, Melancholic, and Anxious distress, and Immunometabolic (IMD) dimensions were characterized in 158 patients who participated in the Predictors of Remission to Individual and Combined Treatments (PReDICT) study and from whom plasma and serum samples were available. The NESDA-defined inflammatory index, a composite measure of interleukin-6 and C-reactive protein, was measured from pre-treatment plasma samples and a metabolomic profile was defined using serum samples analyzed on three metabolomics platforms targeting fatty acids and complex lipids, amino acids, acylcarnitines, and gut microbiome-derived metabolites among other metabolites of central metabolism. RESULTS: The IMD clinical dimension and the inflammatory index were positively correlated (r = 0.19, p = 0.019) after controlling for age, sex, and body mass index, whereas the Melancholic and Anxious distress dimensions were not, replicating the previous NESDA findings. The three symptom dimensions had distinct metabolomic signatures using both univariate and set enrichment statistics. IMD severity correlated mainly with gut-derived metabolites and a few acylcarnitines and long chain saturated free fatty acids. Melancholia severity was significantly correlated with several phosphatidylcholines, primarily the ether-linked variety, lysophosphatidylcholines, as well as several amino acids. Anxious distress severity correlated with several medium and long chain free fatty acids, both saturated and polyunsaturated ones, sphingomyelins, as well as several amino acids and bile acids. CONCLUSION: The IMD dimension of depression appears reliably associated with markers of inflammation. Metabolomics provides powerful tools to inform about depression heterogeneity and molecular mechanisms related to clinical dimensions in MDD, which include a link to gut microbiome and lipids implicated in membrane structure and function.


Asunto(s)
Trastorno Depresivo Mayor , Aminoácidos , Depresión , Ácidos Grasos no Esterificados , Humanos , Metabolómica
11.
Mol Psychiatry ; 26(12): 7372-7383, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34088979

RESUMEN

Depression constitutes a leading cause of disability worldwide. Despite extensive research on its interaction with psychobiological factors, associated pathways are far from being elucidated. Metabolomics, assessing the final products of complex biochemical reactions, has emerged as a valuable tool for exploring molecular pathways. We conducted a metabolome-wide association analysis to investigate the link between the serum metabolome and depressed mood (DM) in 1411 participants of the KORA (Cooperative Health Research in the Augsburg Region) F4 study (discovery cohort). Serum metabolomics data comprised 353 unique metabolites measured by Metabolon. We identified 72 (5.1%) KORA participants with DM. Linear regression tests were conducted modeling each metabolite value by DM status, adjusted for age, sex, body-mass index, antihypertensive, cardiovascular, antidiabetic, and thyroid gland hormone drugs, corticoids and antidepressants. Sensitivity analyses were performed in subcohorts stratified for sex, suicidal ideation, and use of antidepressants. We replicated our results in an independent sample of 968 participants of the SHIP-Trend (Study of Health in Pomerania) study including 52 (5.4%) individuals with DM (replication cohort). We found significantly lower laurylcarnitine levels in KORA F4 participants with DM after multiple testing correction according to Benjamini/Hochberg. This finding was replicated in the independent SHIP-Trend study. Laurylcarnitine remained significantly associated (p value < 0.05) with depression in samples stratified for sex, suicidal ideation, and antidepressant medication. Decreased blood laurylcarnitine levels in depressed individuals may point to impaired fatty acid oxidation and/or mitochondrial function in depressive disorders, possibly representing a novel therapeutic target.


Asunto(s)
Depresión , Metaboloma , Índice de Masa Corporal , Estudios de Cohortes , Depresión/tratamiento farmacológico , Humanos , Metabolómica
12.
Alzheimers Dement ; 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35829654

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is accompanied by metabolic alterations both in the periphery and the central nervous system. However, so far, a global view of AD-associated metabolic changes in the brain has been missing. METHODS: We metabolically profiled 500 samples from the dorsolateral prefrontal cortex. Metabolite levels were correlated with eight clinical parameters, covering both late-life cognitive performance and AD neuropathology measures. RESULTS: We observed widespread metabolic dysregulation associated with AD, spanning 298 metabolites from various AD-relevant pathways. These included alterations to bioenergetics, cholesterol metabolism, neuroinflammation, and metabolic consequences of neurotransmitter ratio imbalances. Our findings further suggest impaired osmoregulation as a potential pathomechanism in AD. Finally, inspecting the interplay of proteinopathies provided evidence that metabolic associations were largely driven by tau pathology rather than amyloid beta pathology. DISCUSSION: This work provides a comprehensive reference map of metabolic brain changes in AD that lays the foundation for future mechanistic follow-up studies.

13.
Alzheimers Dement ; 18(6): 1260-1278, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757660

RESUMEN

Metabolites, the biochemical products of the cellular process, can be used to measure alterations in biochemical pathways related to the pathogenesis of Alzheimer's disease (AD). However, the relationships between systemic abnormalities in metabolism and the pathogenesis of AD are poorly understood. In this study, we aim to identify AD-specific metabolomic changes and their potential upstream genetic and transcriptional regulators through an integrative systems biology framework for analyzing genetic, transcriptomic, metabolomic, and proteomic data in AD. Metabolite co-expression network analysis of the blood metabolomic data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) shows short-chain acylcarnitines/amino acids and medium/long-chain acylcarnitines are most associated with AD clinical outcomes, including episodic memory scores and disease severity. Integration of the gene expression data in both the blood from the ADNI and the brain from the Accelerating Medicines Partnership Alzheimer's Disease (AMP-AD) program reveals ABCA1 and CPT1A are involved in the regulation of acylcarnitines and amino acids in AD. Gene co-expression network analysis of the AMP-AD brain RNA-seq data suggests the CPT1A- and ABCA1-centered subnetworks are associated with neuronal system and immune response, respectively. Increased ABCA1 gene expression and adiponectin protein, a regulator of ABCA1, correspond to decreased short-chain acylcarnitines and amines in AD in the ADNI. In summary, our integrated analysis of large-scale multiomics data in AD systematically identifies novel metabolites and their potential regulators in AD and the findings pave a way for not only developing sensitive and specific diagnostic biomarkers for AD but also identifying novel molecular mechanisms of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Aminoácidos , Genómica , Redes y Vías Metabólicas/genética , Metabolómica , Proteómica
14.
Alzheimers Dement ; 18(11): 2151-2166, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35077012

RESUMEN

INTRODUCTION: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteína E2/genética , Australia , Apolipoproteínas E/genética , Genotipo , Estudios de Cohortes , Apolipoproteína E4/genética
15.
BMC Med ; 19(1): 161, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34256740

RESUMEN

BACKGROUND: Periodontitis is among the most common chronic diseases worldwide, and it is one of the main reasons for tooth loss. Comprehensive profiling of the metabolite content of the saliva can enable the identification of novel pathways associated with periodontitis and highlight non-invasive markers to facilitate time and cost-effective screening efforts for the presence of periodontitis and the prediction of tooth loss. METHODS: We first investigated cross-sectional associations of 13 oral health variables with saliva levels of 562 metabolites, measured by untargeted mass spectrometry among a sub-sample (n = 938) of the Study of Health in Pomerania (SHIP-2) using linear regression models adjusting for common confounders. We took forward any candidate metabolite associated with at least two oral variables, to test for an association with a 5-year tooth loss over and above baseline oral health status using negative binomial regression models. RESULTS: We identified 84 saliva metabolites that were associated with at least one oral variable cross-sectionally, for a subset of which we observed robust replication in an independent study. Out of 34 metabolites associated with more than two oral variables, baseline saliva levels of nine metabolites were positively associated with a 5-year tooth loss. Across all analyses, the metabolites 2-pyrrolidineacetic acid and butyrylputrescine were the most consistent candidate metabolites, likely reflecting oral dysbiosis. Other candidate metabolites likely reflected tissue destruction and cell proliferation. CONCLUSIONS: Untargeted metabolic profiling of saliva replicated metabolic signatures of periodontal status and revealed novel metabolites associated with periodontitis and future tooth loss.


Asunto(s)
Periodontitis , Pérdida de Diente , Estudios Transversales , Humanos , Metabolómica , Periodontitis/diagnóstico , Periodontitis/epidemiología , Saliva , Pérdida de Diente/epidemiología
16.
Hum Mol Genet ; 27(6): 1106-1121, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29325019

RESUMEN

Epigenetic regulation of cellular function provides a mechanism for rapid organismal adaptation to changes in health, lifestyle and environment. Associations of cytosine-guanine di-nucleotide (CpG) methylation with clinical endpoints that overlap with metabolic phenotypes suggest a regulatory role for these CpG sites in the body's response to disease or environmental stress. We previously identified 20 CpG sites in an epigenome-wide association study (EWAS) with metabolomics that were also associated in recent EWASs with diabetes-, obesity-, and smoking-related endpoints. To elucidate the molecular pathways that connect these potentially regulatory CpG sites to the associated disease or lifestyle factors, we conducted a multi-omics association study including 2474 mass-spectrometry-based metabolites in plasma, urine and saliva, 225 NMR-based lipid and metabolite measures in blood, 1124 blood-circulating proteins using aptamer technology, 113 plasma protein N-glycans and 60 IgG-glyans, using 359 samples from the multi-ethnic Qatar Metabolomics Study on Diabetes (QMDiab). We report 138 multi-omics associations at these CpG sites, including diabetes biomarkers at the diabetes-associated TXNIP locus, and smoking-specific metabolites and proteins at multiple smoking-associated loci, including AHRR. Mendelian randomization suggests a causal effect of metabolite levels on methylation of obesity-associated CpG sites, i.e. of glycerophospholipid PC(O-36: 5), glycine and a very low-density lipoprotein (VLDL-A) on the methylation of the obesity-associated CpG loci DHCR24, MYO5C and CPT1A, respectively. Taken together, our study suggests that multi-omics-associated CpG methylation can provide functional read-outs for the underlying regulatory response mechanisms to disease or environmental insults.


Asunto(s)
Islas de CpG , Metilación de ADN , Trastornos del Metabolismo de la Glucosa/genética , Obesidad/genética , Fumar Tabaco/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Portadoras/genética , Biología Computacional/métodos , Epigénesis Genética , Femenino , Estudios de Asociación Genética/métodos , Genoma Humano , Estudio de Asociación del Genoma Completo/métodos , Humanos , Lípidos/sangre , Masculino , Metaboloma , Proteínas Represoras/genética
17.
Bioinformatics ; 35(3): 532-534, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032270

RESUMEN

Summary: Associations of metabolomics data with phenotypic outcomes are expected to span functional modules, which are defined as sets of correlating metabolites that are coordinately regulated. Moreover, these associations occur at different scales, from entire pathways to only a few metabolites; an aspect that has not been addressed by previous methods. Here, we present MoDentify, a free R package to identify regulated modules in metabolomics networks at different layers of resolution. Importantly, MoDentify shows higher statistical power than classical association analysis. Moreover, the package offers direct interactive visualization of the results in Cytoscape. We present an application example using complex, multifluid metabolomics data. Due to its generic character, the method is widely applicable to other types of data. Availability and implementation: https://github.com/krumsieklab/MoDentify (vignette includes detailed workflow). Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Metabolómica , Programas Informáticos , Visualización de Datos , Fenotipo
18.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348910

RESUMEN

Shared metabolomic patterns at delivery have been suggested to underlie the mother-to-child transmission of adverse metabolic health. This study aimed to investigate whether mothers with gestational diabetes mellitus (GDM) and their offspring show similar metabolomic patterns several years postpartum. Targeted metabolomics (including 137 metabolites) was performed in plasma samples obtained during an oral glucose tolerance test from 48 mothers with GDM and their offspring at a cross-sectional study visit 8 years after delivery. Partial Pearson's correlations between the area under the curve (AUC) of maternal and offspring metabolites were calculated, yielding so-called Gaussian graphical models. Spearman's correlations were applied to investigate correlations of body mass index (BMI), Matsuda insulin sensitivity index (ISI-M), dietary intake, and physical activity between generations, and correlations of metabolite AUCs with lifestyle variables. This study revealed that BMI, ISI-M, and the AUC of six metabolites (carnitine, taurine, proline, SM(-OH) C14:1, creatinine, and PC ae C34:3) were significantly correlated between mothers and offspring several years postpartum. Intergenerational metabolite correlations were independent of shared BMI, ISI-M, age, sex, and all other metabolites. Furthermore, creatinine was correlated with physical activity in mothers. This study suggests that there is long-term metabolic programming in the offspring of mothers with GDM and informs us about targets that could be addressed by future intervention studies.


Asunto(s)
Peso al Nacer , Diabetes Gestacional/fisiopatología , Transmisión Vertical de Enfermedad Infecciosa , Metaboloma , Obesidad/patología , Adulto , Glucemia/análisis , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Madres , Obesidad/etiología , Obesidad/metabolismo , Embarazo , Factores de Riesgo
19.
J Cell Mol Med ; 23(8): 5144-5153, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31215770

RESUMEN

Metabolomics studies now approach large sample sizes and the health characterization of the study population often include complete blood count (CBC) results. Upon careful interpretation the CBC aids diagnosis and provides insight into the health status of the patient within a clinical setting. Uncovering metabolic signatures associated with parameters of the CBC in apparently healthy individuals may facilitate interpretation of metabolomics studies in general and related to diseases. For this purpose 879 subjects from the population-based Study of Health in Pomerania (SHIP)-TREND were included. Using metabolomics data resulting from mass-spectrometry based measurements in plasma samples associations of specific CBC parameters with metabolites were determined by linear regression models. In total, 118 metabolites significantly associated with at least one of the CBC parameters. Strongest associations were observed with metabolites of heme degradation and energy production/consumption. Inverse association seen with mean corpuscular volume and mean corpuscular haemoglobin comprised metabolites potentially related to kidney function. The presently identified metabolic signatures are likely derived from the general function and formation/elimination of blood cells. The wealth of associated metabolites strongly argues to consider CBC in the interpretation of metabolomics studies, in particular if mutual effects on those parameters by the disease of interest are known.


Asunto(s)
Recuento de Células Sanguíneas , Estado de Salud , Metabolómica , Adulto , Femenino , Humanos , Masculino , Espectrometría de Masas
20.
Alzheimers Dement ; 15(2): 232-244, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30337152

RESUMEN

INTRODUCTION: Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-ß deposition. METHOD: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose metabolism ([18F]FDG PET). RESULTS: Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Aß1-42 ("A") and three with CSF p-tau181 ("T") (corrected P < .05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy ("N"), respectively (corrected P < .05). DISCUSSION: This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.


Asunto(s)
Enfermedad de Alzheimer/patología , Ácidos y Sales Biliares , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/patología , Neuroimagen , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Disfunción Cognitiva/líquido cefalorraquídeo , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Estudios Prospectivos , Proteínas tau/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA