Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7881): 468-472, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34552242

RESUMEN

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.


Asunto(s)
Ciclo del Carbono , Ecosistema , Plantas/metabolismo , Ciclo Hidrológico , Dióxido de Carbono/metabolismo , Clima , Conjuntos de Datos como Asunto , Humedad , Plantas/clasificación , Análisis de Componente Principal
2.
Proc Natl Acad Sci U S A ; 119(25): e2026733119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35709320

RESUMEN

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.


Asunto(s)
Efectos Antropogénicos , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Árboles , Conservación de los Recursos Naturales/métodos , Humanos , Filogenia , Árboles/clasificación
3.
Glob Chang Biol ; 30(3): e17224, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38459661

RESUMEN

Wood density is a fundamental property related to tree biomechanics and hydraulic function while playing a crucial role in assessing vegetation carbon stocks by linking volumetric retrieval and a mass estimate. This study provides a high-resolution map of the global distribution of tree wood density at the 0.01° (~1 km) spatial resolution, derived from four decision trees machine learning models using a global database of 28,822 tree-level wood density measurements. An ensemble of four top-performing models combined with eight cross-validation strategies shows great consistency, providing wood density patterns with pronounced spatial heterogeneity. The global pattern shows lower wood density values in northern and northwestern Europe, Canadian forest regions and slightly higher values in Siberia forests, western United States, and southern China. In contrast, tropical regions, especially wet tropical areas, exhibit high wood density. Climatic predictors explain 49%-63% of spatial variations, followed by vegetation characteristics (25%-31%) and edaphic properties (11%-16%). Notably, leaf type (evergreen vs. deciduous) and leaf habit type (broadleaved vs. needleleaved) are the most dominant individual features among all selected predictive covariates. Wood density tends to be higher for angiosperm broadleaf trees compared to gymnosperm needleleaf trees, particularly for evergreen species. The distributions of wood density categorized by leaf types and leaf habit types have good agreement with the features observed in wood density measurements. This global map quantifying wood density distribution can help improve accurate predictions of forest carbon stocks, providing deeper insights into ecosystem functioning and carbon cycling such as forest vulnerability to hydraulic and thermal stresses in the context of future climate change.


Asunto(s)
Ecosistema , Madera , Canadá , Bosques , Hojas de la Planta , Carbono
5.
Nature ; 562(7725): 57-62, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30258229

RESUMEN

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.


Asunto(s)
Calentamiento Global , Fenómenos Fisiológicos de las Plantas , Plantas/anatomía & histología , Tundra , Biometría , Mapeo Geográfico , Humedad , Fenotipo , Suelo/química , Análisis Espacio-Temporal , Temperatura , Agua/análisis
6.
New Phytol ; 240(4): 1687-1702, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37243532

RESUMEN

Taxonomic checklists used to verify published plant names and identify synonyms are a cornerstone of biological research. Four global authoritative checklists for vascular plants exist: Leipzig Catalogue of Vascular Plants, World Checklist of Vascular Plants, World Flora Online (successor of The Plant List, TPL), and WorldPlants. We compared these four checklists in terms of size and differences across taxa. We matched taxon names of these checklists and TPL against each other, identified differences across checklists, and evaluated the consistency of accepted names linked to individual taxon names. We assessed geographic and phylogenetic patterns of variance. All checklists differed strongly compared with TPL and provided identical information on c. 60% of plant names. Geographically, differences in checklists increased from low to high latitudes. Phylogenetically, we detected strong variability across families. A comparison of name-matching performance on taxon names submitted to the functional trait database TRY, and a check of completeness of accepted names evaluated against an independent, expert-curated checklist of the family Meliaceae, showed a similar performance across checklists. This study raises awareness on the differences in data and approach across these checklists potentially impacting analyses. We propose ideas on the way forward exploring synergies and harmonizing the four global checklists.


Asunto(s)
Lista de Verificación , Tracheophyta , Humanos , Filogenia , Plantas , Bases de Datos Factuales
7.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743552

RESUMEN

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Asunto(s)
Embolia , Agua Subterránea , Agua/fisiología , Madera/fisiología , Xilema/fisiología , Plantas , Hojas de la Planta/fisiología , Sequías
8.
Glob Chang Biol ; 29(14): 4044-4055, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186143

RESUMEN

Soil acidification induced by reactive nitrogen (N) inputs can alter the structure and function of terrestrial ecosystems. Because different N-transformation processes contribute to the production and consumption of H+ , the magnitude of acidification likely depends on the relative amounts of organic N (ON) and inorganic N (IN) inputs. However, few studies have explicitly measured the effects of N composition on soil acidification. In this study, we first conducted a meta-analysis to test the effects of ON or IN inputs on soil acidification across 53 studies in grasslands. We then compared soil acidification across five different ON:IN ratios and two input rates based on long-term field N addition experiments. The meta-analysis showed that ON had weaker effects on soil acidification than IN when the N addition rate was above 20 g N m-2 year-1 . The field experiment confirmed the findings from meta-analysis: N addition with proportions of ON ≥ 20% caused less soil acidification, especially at a high input rate (30 g N m-2 year-1 ). Structural equation model analysis showed that this result was largely due to a relatively low rate of H+ production from ON as NH3 volatilization and uptake of ON and NH4 + by the dominant grass species Leymus chinensis (which are both lower net contributors to H+ production) result in less NH4 + available for nitrification (which is a higher net contributor to H+ production). These results indicate that the evaluation of soil acidification induced by N inputs should consider N forms and manipulations of relative composition of N inputs may provide an effective approach to alleviate the N-induced soil acidification.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Nitrógeno/análisis , Nitrificación , Poaceae , Concentración de Iones de Hidrógeno
9.
PLoS Biol ; 17(3): e3000183, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30883539

RESUMEN

Recent years have seen an explosion in the availability of biodiversity data describing the distribution, function, and evolutionary history of life on earth. Integrating these heterogeneous data remains a challenge due to large variations in observational scales, collection purposes, and terminologies. Here, we conceptualize widely used biodiversity data types according to their domain (what aspect of biodiversity is described?) and informational resolution (how specific is the description?). Applying this framework to major data providers in biodiversity research reveals a strong focus on the disaggregated end of the data spectrum, whereas aggregated data types remain largely underutilized. We discuss the implications of this imbalance for the scope and representativeness of current macroecological research and highlight the synergies arising from a tighter integration of biodiversity data across domains and resolutions. We lay out effective strategies for data collection, mobilization, imputation, and sharing and summarize existing frameworks for scalable and integrative biodiversity research. Finally, we use two case studies to demonstrate how the explicit consideration of data domain and resolution helps to identify biases and gaps in global data sets and achieve unprecedented taxonomic and geographical data coverage in macroecological analyses.


Asunto(s)
Biodiversidad , Evolución Biológica , Modelos Biológicos
10.
Nature ; 529(7585): 204-7, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26700807

RESUMEN

Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.


Asunto(s)
Fenotipo , Árboles/anatomía & histología , Árboles/fisiología , Bosques , Internacionalidad , Modelos Biológicos , Hojas de la Planta/fisiología , Árboles/crecimiento & desarrollo , Madera/análisis
11.
Nature ; 529(7585): 167-71, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26700811

RESUMEN

Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.


Asunto(s)
Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas/anatomía & histología , Biodiversidad , Bases de Datos Factuales , Variación Genética , Internacionalidad , Modelos Biológicos , Nitrógeno/análisis , Tamaño de los Órganos , Desarrollo de la Planta , Hojas de la Planta/anatomía & histología , Tallos de la Planta/anatomía & histología , Plantas/clasificación , Reproducción , Semillas/anatomía & histología , Selección Genética , Especificidad de la Especie
12.
Ecol Lett ; 24(5): 970-983, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33638576

RESUMEN

Life history strategies are fundamental to the ecology and evolution of organisms and are important for understanding extinction risk and responses to global change. Using global datasets and a multiple response modelling framework we show that trait-climate interactions are associated with life history strategies for a diverse range of plant species at the global scale. Our modelling framework informs our understanding of trade-offs and positive correlations between elements of life history after accounting for environmental context and evolutionary and trait-based constraints. Interactions between plant traits and climatic context were needed to explain variation in age at maturity, distribution of mortality across the lifespan and generation times of species. Mean age at maturity and the distribution of mortality across plants' lifespan were under evolutionary constraints. These findings provide empirical support for the theoretical expectation that climatic context is key to understanding trait to life history relationships globally.


Asunto(s)
Rasgos de la Historia de Vida , Evolución Biológica , Ecología , Fenotipo , Plantas
13.
New Phytol ; 232(1): 42-59, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197626

RESUMEN

Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.


Asunto(s)
Ecosistema , Plantas , Fenotipo , Hojas de la Planta
14.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25832402

RESUMEN

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Asunto(s)
Biodiversidad , Actividades Humanas , Animales , Conservación de los Recursos Naturales/tendencias , Ecología/tendencias , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie
15.
Proc Natl Acad Sci U S A ; 115(20): 5229-5234, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712857

RESUMEN

Cooperative interactions among species, termed mutualisms, have played a crucial role in the evolution of life on Earth. However, despite key potential benefits to partners, there are many cases in which two species cease to cooperate and mutualisms break down. What factors drive the evolutionary breakdown of mutualism? We examined the pathways toward breakdowns of the mutualism between plants and arbuscular mycorrhizal fungi. By using a comparative approach, we identify ∼25 independent cases of complete mutualism breakdown across global seed plants. We found that breakdown of cooperation was only stable when host plants (i) partner with other root symbionts or (ii) evolve alternative resource acquisition strategies. Our results suggest that key mutualistic services are only permanently lost if hosts evolve alternative symbioses or adaptations.


Asunto(s)
Evolución Biológica , Ambiente , Micorrizas/fisiología , Plantas/microbiología , Simbiosis/fisiología , Retroalimentación Fisiológica
16.
Glob Chang Biol ; 26(4): 2573-2583, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32091184

RESUMEN

Plant respiration is an important contributor to the proposed positive global carbon-cycle feedback to climate change. However, as a major component, leaf mitochondrial ('dark') respiration (Rd ) differs among species adapted to contrasting environments and is known to acclimate to sustained changes in temperature. No accepted theory explains these phenomena or predicts its magnitude. Here we propose that the acclimation of Rd follows an optimal behaviour related to the need to maintain long-term average photosynthetic capacity (Vcmax ) so that available environmental resources can be most efficiently used for photosynthesis. To test this hypothesis, we extend photosynthetic co-ordination theory to predict the acclimation of Rd to growth temperature via a link to Vcmax , and compare predictions to a global set of measurements from 112 sites spanning all terrestrial biomes. This extended co-ordination theory predicts that field-measured Rd and Vcmax accessed at growth temperature (Rd,tg and Vcmax,tg ) should increase by 3.7% and 5.5% per degree increase in growth temperature. These acclimated responses to growth temperature are less steep than the corresponding instantaneous responses, which increase 8.1% and 9.9% per degree of measurement temperature for Rd and Vcmax respectively. Data-fitted responses proof indistinguishable from the values predicted by our theory, and smaller than the instantaneous responses. Theory and data are also shown to agree that the basal rates of both Rd and Vcmax assessed at 25°C (Rd,25 and Vcmax,25 ) decline by ~4.4% per degree increase in growth temperature. These results provide a parsimonious general theory for Rd acclimation to temperature that is simpler-and potentially more reliable-than the plant functional type-based leaf respiration schemes currently employed in most ecosystem and land-surface models.

17.
Glob Chang Biol ; 26(1): 119-188, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31891233

RESUMEN

Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.


Asunto(s)
Acceso a la Información , Ecosistema , Biodiversidad , Ecología , Plantas
18.
Glob Ecol Biogeogr ; 29(2): 281-294, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32063745

RESUMEN

AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.

19.
Proc Natl Acad Sci U S A ; 114(51): E10937-E10946, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29196525

RESUMEN

Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.


Asunto(s)
Ecosistema , Plantas , Carácter Cuantitativo Heredable , Ambiente , Geografía , Modelos Estadísticos , Dispersión de las Plantas , Análisis Espacial
20.
Ecol Lett ; 22(3): 506-517, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30609108

RESUMEN

Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (Vcmax ), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co-optimization of carboxylation and water costs for photosynthesis, suggests that optimal Vcmax can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field-measured Vcmax dataset for C3 plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first-order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.


Asunto(s)
Aclimatación , Dióxido de Carbono , Fotosíntesis , Adaptación Fisiológica , Nitrógeno , Hojas de la Planta , Ribulosa-Bifosfato Carboxilasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA