Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(20): 5086-5088, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34559987

RESUMEN

The nuclear hormone receptor estrogen receptor alpha (ERα) is a well-known transcription factor present in many breast cancers, where it promotes cancer progression. In this issue of Cell, Xu et al. report that ERα is also an RNA-binding protein and that its post-transcriptional activity enables cancer cell fitness and survival.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Receptor alfa de Estrógeno/genética , Femenino , Humanos , ARN/genética , Receptores de Estrógenos/genética
2.
Proc Natl Acad Sci U S A ; 121(24): e2321344121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830107

RESUMEN

The estrogen receptor-α (ER) is thought to function only as a homodimer but responds to a variety of environmental, metazoan, and therapeutic estrogens at subsaturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations-receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining the binding of the same ligand in crystal structures of ER in the agonist vs. antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist vs. antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from the ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric vs. dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing different modes for ligand-dependent regulation of ER activity.


Asunto(s)
Receptor alfa de Estrógeno , Estrógenos , Simulación de Dinámica Molecular , Multimerización de Proteína , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/química , Regulación Alostérica , Humanos , Ligandos , Estrógenos/metabolismo , Estrógenos/química , Sitios de Unión , Unión Proteica , Conformación Proteica
3.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34452998

RESUMEN

Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Antagonistas de Estrógenos/química , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cristalografía por Rayos X , Femenino , Humanos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Células Tumorales Cultivadas
4.
Breast Cancer Res ; 25(1): 76, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370117

RESUMEN

FOXM1 (Forkhead box M1) is an oncogenic transcription factor that is greatly upregulated in breast cancer and many other cancers where it promotes tumorigenesis, and cancer growth and progression. It is expressed in all subtypes of breast cancer and is the factor most associated with risk of poor patient survival, especially so in triple negative breast cancer (TNBC). Thus, new approaches to inhibiting FOXM1 and its activities, and combination therapies utilizing FOXM1 inhibitors in conjunction with known cancer drugs that work together synergistically, could improve cancer treatment outcomes. Targeting FOXM1 might prove especially beneficial in TNBC where few targeted therapies currently exist, and also in suppressing recurrent advanced estrogen receptor (ER)-positive and HER2-positive breast cancers for which treatments with ER or HER2 targeted therapies that were effective initially are no longer beneficial. We present these perspectives and future directions in the context of what is known about FOXM1, its regulation, and its key roles in promoting cancer aggressiveness and metastasis, while being absent or very low in most normal non-regenerating adult tissues. We discuss new inhibitors of FOXM1 and highlight FOXM1 as an attractive target for controlling drug-resistant and difficult-to-suppress breast cancers, and how blocking FOXM1 might improve outcomes for patients with all subtypes of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Adulto , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Proteína Forkhead Box M1/genética , Antineoplásicos/uso terapéutico , Resultado del Tratamiento , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular
5.
Breast Cancer Res Treat ; 198(3): 607-621, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36847915

RESUMEN

PURPOSE: Few targeted treatment options currently exist for patients with advanced, often recurrent breast cancers, both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer. Forkhead box M1 (FOXM1) is an oncogenic transcription factor that drives all cancer hallmarks in all subtypes of breast cancer. We previously developed small-molecule inhibitors of FOXM1 and to further exploit their potential as anti-proliferative agents, we investigated combining FOXM1 inhibitors with drugs currently used in the treatment of breast and other cancers and assessed the potential for enhanced inhibition of breast cancer. METHODS: FOXM1 inhibitors alone and in combination with other cancer therapy drugs were assessed for their effects on suppression of cell viability and cell cycle progression, induction of apoptosis and caspase 3/7 activity, and changes in related gene expressions. Synergistic, additive, or antagonistic interactions were evaluated using ZIP (zero interaction potency) synergy scores and the Chou-Talalay interaction combination index. RESULTS: The FOXM1 inhibitors displayed synergistic inhibition of proliferation, enhanced G2/M cell cycle arrest, and increased apoptosis and caspase 3/7 activity and associated changes in gene expression when combined with several drugs across different pharmacological classes. We found especially strong enhanced effectiveness of FOXM1 inhibitors in combination with drugs in the proteasome inhibitor class for ER-positive and TNBC cells and with CDK4/6 inhibitors (Palbociclib, Abemaciclib, and Ribociclib) in ER-positive cells. CONCLUSION: The findings suggest that the combination of FOXM1 inhibitors with several other drugs might enable dose reduction in both agents and provide enhanced efficacy in treatment of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína Forkhead Box M1/genética , Caspasa 3/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular
6.
Breast Cancer Res Treat ; 185(2): 281-292, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33001337

RESUMEN

PURPOSE: Triple negative breast cancer (TNBC), an aggressive subtype of breast cancer, lacks the three major receptors for predicting outcome or targeting therapy. Hence, our aim was to evaluate the potential of estrogen receptor beta (ERß) as a possible endocrine therapy target in TNBC. METHODS: The expression and prognostic effect of ERß isoforms were analyzed using TCGA breast tumor data, and the expression of ERß isoform mRNA and protein in TNBC cell lines was assayed. Endogenous ERß2 and ERß5 were knocked down with siRNA, and ERß2, ERß5, and ERß1 were upregulated using a doxycycline-inducible lentiviral system. Cell proliferation, migration and invasion, and specific gene expressions were evaluated. RESULTS: ERß2 and ERß5 were the predominant endogenous forms of ERß in TNBC tumors and cell lines. High ERß2 predicted worse clinical outcome. Knockdown of endogenous ERß2/ERß5 in cell lines suppressed proliferation, migration and invasion, and downregulated proto-oncogene survivin expression. ERß2/ERß5 upregulation did the reverse, increasing survivin and these cell activities. ERß1 was barely detectable in TNBC cell lines, but its upregulation reduced survivin, increased tumor suppressor expression (E-cadherin and cystatins), and suppressed proliferation, migration and invasion in both ligand-independent and dependent manners, suggesting the possible translational benefit of ERß ligands. CONCLUSIONS: ERß2/ERß5 and ERß1 exhibit sharply contrasting activities in TNBC cells. Our findings imply that delineating the absolute amounts and relative ratios of the different ERß isoforms might have prognostic and therapeutic relevance, and could enable better selection of optimal approaches for treatment of this often aggressive form of breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptor beta de Estrógeno , Isoformas de Proteínas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Humanos , Pronóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proto-Oncogenes Mas , ARN Mensajero , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
7.
Breast Cancer Res Treat ; 181(2): 297-307, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32277377

RESUMEN

PURPOSE: Many human breast tumors become resistant to endocrine therapies and recur due to estrogen receptor (ERα) mutations that convey constitutive activity and a more aggressive phenotype. Here, we examined the effectiveness of a novel adamantyl antiestrogen, K-07, in suppressing the growth of breast cancer metastases containing the two most frequent ER-activating mutations, Y537S and D538G, and in extending survival in a preclinical metastatic cancer model. METHODS: MCF7 breast cancer cells expressing luciferase and Y537S or D538G ER were injected into NOD-SCID-gamma female mice, and animals were treated orally with the antiestrogen K-07 or control vehicle. Comparisons were also made with the antiestrogen Fulvestrant. The development of metastases was monitored by in vivo bioluminescence imaging with phenotypic characterization of the metastases in liver and lung by immunohistochemical and biochemical analyses. RESULTS: These breast cancer cells established metastases in liver and lung, and K-07 treatment reduced the metastatic burden. Mice treated with K-07 also survived much longer. By day 70, only 28% of vehicle-treated mice with mutant ER metastases were alive, whereas all K-07-treated D538G and Y537S mice were still alive. K-07 also markedly reduced the level of metastatic cell ER and the expression of ER-regulated genes. CONCLUSION: The antiestrogen K-07 can reduce in vivo metastasis of breast cancers and extend host survival in this preclinical model driven by constitutively active mutant ERs, suggesting that this compound may be suitable for further translational examination of its efficacy in suppression of metastasis in breast cancers containing constitutively active mutant ERs.


Asunto(s)
Adamantano/análogos & derivados , Adamantano/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Moduladores de los Receptores de Estrógeno/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Mutación , Receptores de Estrógenos/genética , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Cetonas/farmacología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Nat Chem Biol ; 13(1): 111-118, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27870835

RESUMEN

Resistance to endocrine therapies remains a major clinical problem for the treatment of estrogen receptor-α (ERα)-positive breast cancer. On-target side effects limit therapeutic compliance and use for chemoprevention, highlighting an unmet need for new therapies. Here we present a full-antagonist ligand series lacking the prototypical ligand side chain that has been universally used to engender antagonism of ERα through poorly understood structural mechanisms. A series of crystal structures and phenotypic assays reveal a structure-based design strategy with separate design elements for antagonism and degradation of the receptor, and access to a structurally distinct space for further improvements in ligand design. Understanding structural rules that guide ligands to produce diverse ERα-mediated phenotypes has broad implications for the treatment of breast cancer and other estrogen-sensitive aspects of human health including bone homeostasis, energy metabolism, and autoimmunity.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Receptores de Estrógenos/metabolismo , Relación Estructura-Actividad
9.
J Mol Cell Cardiol ; 107: 41-51, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28457941

RESUMEN

Steroid hormone receptors including estrogen receptors (ER) classically function as ligand-regulated transcription factors. However, estrogens also elicit cellular effects through binding to extra-nuclear ER (ERα, ERß, and G protein-coupled ER or GPER) that are coupled to kinases. How extra-nuclear ER actions impact cardiac ischemia-reperfusion (I/R) injury is unknown. We treated ovariectomized wild-type female mice with estradiol or an estrogen-dendrimer conjugate (EDC), which selectively activates extra-nuclear ER, or vehicle interventions for two weeks. I/R injury was then evaluated in isolated Langendorff perfused hearts. Two weeks of treatment with estradiol significantly decreased infarct size and improved post-ischemic contractile function. Similarly, EDC treatment significantly decreased infarct size and increased post-ischemic functional recovery compared to vehicle-treated hearts. EDC also caused an increase in myocardial protein S-nitrosylation, consistent with previous studies showing a role for this post-translational modification in cardioprotection. In further support of a role for S-nitrosylation, inhibition of nitric oxide synthase, but not soluble guanylyl cyclase blocked the EDC mediated protection. The administration of ICI182,780, which is an agonist of G-protein coupled estrogen receptor (GPER) and an antagonist of ERα and ERß, did not result in protection; however, ICI182,780 significantly blocked EDC-mediated cardioprotection, indicating participation of ERα and/or ERß. In studies determining the specific ER subtype and cellular target involved, EDC decreased infarct size and improved functional recovery in mice lacking ERα in cardiomyocytes. In contrast, protection was lost in mice deficient in endothelial cell ERα. Thus, extra-nuclear ERα activation in endothelium reduces cardiac I/R injury in mice, and this likely entails increased protein S-nitrosylation. Since EDC does not stimulate uterine growth, in the clinical setting EDC-like compounds may provide myocardial protection without undesired uterotrophic and cancer-promoting effects.


Asunto(s)
Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Isquemia/genética , Daño por Reperfusión/genética , Animales , Endotelio/metabolismo , Endotelio/patología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/antagonistas & inhibidores , Estrógenos/genética , Estrógenos/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Isquemia/metabolismo , Isquemia/patología , Ratones , Ovariectomía , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Receptores de Estrógenos/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos
10.
Circ Res ; 117(9): 770-8, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26316608

RESUMEN

RATIONALE: 17ß-Estradiol (E2) exerts numerous beneficial effects in vascular disease. It regulates gene transcription through nuclear estrogen receptor α (ERα) via 2 activation functions, AF1 and AF2, and can also activate membrane ERα. The role of E2 on the endothelium relies on membrane ERα activation, but the molecular mechanisms of its action on vascular smooth muscle cells (VSMCs) are not fully understood. OBJECTIVE: The aim of this study was to determine which cellular target and which ERα subfunction are involved in the preventive action of E2 on neointimal hyperplasia. METHODS AND RESULTS: To trigger neointimal hyperplasia of VSMC, we used a mouse model of femoral arterial injury. Cre-Lox models were used to distinguish between the endothelial- and the VSMC-specific actions of E2. The molecular mechanisms underlying the role of E2 were further characterized using both selective ERα agonists and transgenic mice in which the ERαAF1 function had been specifically invalidated. We found that (1) the selective inactivation of ERα in VSMC abrogates the neointimal hyperplasia protection induced by E2, whereas inactivation of endothelial and hematopoietic ERα has no effect; (2) the selective activation of membrane ERα does not prevent neointimal hyperplasia; and (3) ERαAF1 is necessary and sufficient to inhibit postinjury VSMC proliferation. CONCLUSIONS: Altogether, ERαAF1-mediated nuclear action is both necessary and sufficient to inhibit postinjury arterial VSMC proliferation, whereas membrane ERα largely regulates the endothelial functions of E2. This highlights the exquisite cell/tissue-specific actions of the ERα subfunctions and helps to delineate the spectrum of action of selective ER modulators.


Asunto(s)
Arterias/metabolismo , Receptor alfa de Estrógeno/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Actinas/metabolismo , Animales , Arterias/efectos de los fármacos , Arterias/patología , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Estrógenos/farmacología , Arteria Femoral/efectos de los fármacos , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Hiperplasia , Inmunohistoquímica , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Neointima/genética , Ovariectomía , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Túnica Íntima/efectos de los fármacos , Túnica Íntima/metabolismo
11.
Arch Biochem Biophys ; 591: 98-110, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26682631

RESUMEN

Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to find out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were treated in the absence/presence of various concentrations of DS and subjected to gene analysis by RT-qPCR, immunoblotting, and immunocytochemistry. We determined the ability of MDA-MB-231 cells to migrate into wound area and examined the effects of DS on cellular invasion using invasion assay. DS reduced cell viability of both cell lines in a concentration and time-dependent manner. GATA3 expression was enhanced by DS (5.76 µM) in MDA-MB-231 cells. DS (5.76 µM)-treated MDA-MB-231 cells exhibited the morphological characteristic of epithelial-like cells; mRNA expression of DNMT3A, TET2, TET3, ZFPM2 and E-cad were increased while TET1, VIM and MMP9 were decreased. Cellular invasion of MDA-MB-231 was reduced by 65 ± 5% in the presence of 5.76 µM DS. Our data suggested that DS-mediated pathway could promote GATA3 expression at transcription and translation levels. We propose that DS has potential to be used as an anti-invasive agent in breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Dioscorea/química , Diosgenina/análogos & derivados , Extractos Vegetales/administración & dosificación , Raíces de Plantas/química , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diosgenina/administración & dosificación , Relación Dosis-Respuesta a Droga , Humanos , Células MCF-7 , Invasividad Neoplásica , Fitosteroles/administración & dosificación , Saponinas/administración & dosificación , Resultado del Tratamiento
12.
J Am Chem Soc ; 137(32): 10326-35, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26186415

RESUMEN

Estrogen conjugates with a polyamidoamine (PAMAM) dendrimer have shown remarkably selective regulation of the nongenomic actions of estrogens in target cells. In response to pH changes, however, these estrogen-dendrimer conjugates (EDCs) display a major morphological transition that alters the accessibility of the estrogen ligands that compromises the bioactivity of the EDC. A sharp break in dynamic behavior near pH 7 occurs for three different ligands on the surface of a PAMAM-G6 dendrimer: a fluorophore (tetramethylrhodamine [TMR]) and two estrogens (17α-ethynylestradiol and diphenolic acid). Collisional quenching and time-resolved fluorescence anisotropy experiments with TMR-PAMAM revealed high ligand shielding above pH 7 and low shielding below pH 7. Furthermore, when the pH was cycled from 8.5 (conditions of ligand-PAMAM conjugation) to 4.5 (e.g., endosome/lysosome) and through 6.5 (e.g., hypoxic environment) back to pH 8.5, the 17α-ethynylestradiol- and diphenolic acid-PAMAM conjugates experienced a dramatic, irreversible loss in cell stimulatory activity; dynamic NMR studies indicated that the hormonal ligands had become occluded within the more hydrophobic core of the PAMAM dendrimer. Thus, the active state of these estrogen-dendrimer conjugates appears to be metastable. This pH-dependent irreversible masking of activity is of considerable relevance to the design of drug conjugates with amine-bearing PAMAM dendrimers.


Asunto(s)
Dendrímeros/química , Portadores de Fármacos/química , Etinilestradiol/química , Carbocianinas/química , Dendrímeros/farmacología , Etinilestradiol/farmacología , Polarización de Fluorescencia , Colorantes Fluorescentes/química , Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Células MCF-7/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Microscopía Fluorescente , Ácidos Pentanoicos/química , Fenoles/química , Receptores de Estrógenos/metabolismo , Rodaminas/química
13.
Breast Cancer Res ; 16(5): 436, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25213081

RESUMEN

INTRODUCTION: The forkhead transcription factor FOXM1 coordinates expression of cell cycle-related genes and plays a pivotal role in tumorigenesis and cancer progression. We previously showed that FOXM1 acts downstream of 14-3-3ζ signaling, the elevation of which correlates with a more aggressive tumor phenotype. However, the role that FOXM1 might play in engendering resistance to endocrine treatments in estrogen receptor-positive (ER+) patients when tumor FOXM1 is high has not been clearly defined yet. METHODS: We analyzed FOXM1 protein expression by immunohistochemistry in 501 ER-positive breast cancers. We also mapped genome-wide FOXM1, extracellular signal-regulated kinase 2 and ERα binding events by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in hormone-sensitive and resistant breast cancer cells after tamoxifen treatment. These binding profiles were integrated with gene expression data derived from cells before and after FOXM1 knockdown to highlight specific FOXM1 transcriptional networks. We also modulated the levels of FOXM1 and newly discovered FOXM1-regulated genes and examined their impact on the cancer stem-like cell population and on cell invasiveness and resistance to endocrine treatments. RESULTS: FOXM1 protein expression was high in 20% of the tumors, which correlated with significantly reduced survival in these patients (P = 0.003 by logrank Mantel-Cox test). ChIP-seq analyses revealed that FOXM1 binding sites were enriched at the transcription start site of genes involved in cell-cycle progression, maintenance of stem cell properties, and invasion and metastasis, all of which are associated with a poor prognosis in ERα-positive patients treated with tamoxifen. Integration of binding profiles with gene expression highlighted FOXM1 transcriptional networks controlling cell proliferation, stem cell properties, invasion and metastasis. Increased expression of FOXM1 was associated with an expansion of the cancer stem-like cell population and with increased cell invasiveness and resistance to endocrine treatments. Use of a selective FOXM1 inhibitor proved very effective in restoring endocrine therapy sensitivity and decreasing breast cancer aggressiveness. CONCLUSIONS: Collectively, our findings uncover novel roles for FOXM1 and FOXM1-regulated genes in promoting cancer stem-like cell properties and therapy resistance. They highlight the relevance of FOXM1 as a therapeutic target to be considered for reducing invasiveness and enhancing breast cancer response to endocrine treatments.


Asunto(s)
Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Factores de Transcripción Forkhead/fisiología , Células Madre Neoplásicas/fisiología , Receptores de Estrógenos/metabolismo , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Proteína Forkhead Box M1 , Ontología de Genes , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Invasividad Neoplásica , Unión Proteica , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Resultado del Tratamiento
14.
Mol Syst Biol ; 9: 676, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23774759

RESUMEN

The closely related transcription factors (TFs), estrogen receptors ERα and ERß, regulate divergent gene expression programs and proliferative outcomes in breast cancer. Utilizing breast cancer cells with ERα, ERß, or both receptors as a model system to define the basis for differing response specification by related TFs, we show that these TFs and their key coregulators, SRC3 and RIP140, generate overlapping as well as unique chromatin-binding and transcription-regulating modules. Cistrome and transcriptome analyses and the use of clustering algorithms delineated 11 clusters representing different chromatin-bound receptor and coregulator assemblies that could be functionally associated through enrichment analysis with distinct patterns of gene regulation and preferential coregulator usage, RIP140 with ERß and SRC3 with ERα. The receptors modified each other's transcriptional effect, and ERß countered the proliferative drive of ERα through several novel mechanisms associated with specific binding-site clusters. Our findings delineate distinct TF-coregulator assemblies that function as control nodes, specifying precise patterns of gene regulation, proliferation, and metabolism, as exemplified by two of the most important nuclear hormone receptors in human breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica , Genómica , Proteínas Nucleares/genética , Coactivador 3 de Receptor Nuclear/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Cromatina/genética , Cromatina/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Humanos , Familia de Multigenes , Proteínas Nucleares/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Proteína de Interacción con Receptores Nucleares 1 , Mapas de Interacción de Proteínas , Transducción de Señal , Transcriptoma
17.
FASEB J ; 27(11): 4406-18, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23882126

RESUMEN

Because little is known about the actions of botanical estrogens (BEs), widely consumed by menopausal women, we investigated the mechanistic and cellular activities of some major BEs. We examined the interactions of genistein, daidzein, equol, and liquiritigenin with estrogen receptors ERα and ERß, with key coregulators (SRC3 and RIP140) and chromatin binding sites, and the regulation of gene expression and proliferation in MCF-7 breast cancer cells containing ERα and/or ERß. Unlike the endogenous estrogen, estradiol (E2), BEs preferentially bind to ERß, but their ERß-potency selectivity in gene stimulation (340- to 830-fold vs. E2) is enhanced at several levels (coregulator recruitment, chromatin binding); nevertheless, at high (0.1 or 1 µM) concentrations, BEs also fully activate ERα. Because ERα drives breast cancer cell proliferation and ERß dampens this, the relative levels of these two ERs in target cells and the BE dose greatly affect gene expression and proliferative response and will be crucial determinants of the potential benefits vs. risks of BEs. Our findings reveal key and novel mechanistic differences in the estrogenic activities of BEs vs. E2, with BEs displaying patterns of activity distinctly different from those seen with E2 and provide valuable information to inform future studies.


Asunto(s)
Receptor beta de Estrógeno/metabolismo , Fitoestrógenos/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proliferación Celular , Cromatina/metabolismo , Relación Dosis-Respuesta a Droga , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Humanos , Células MCF-7 , Proteínas Nucleares/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Proteína de Interacción con Receptores Nucleares 1 , Transcripción Genética
18.
J Ovarian Res ; 17(1): 94, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704607

RESUMEN

BACKGROUND: Genetic studies implicate the oncogenic transcription factor Forkhead Box M1 (FOXM1) as a potential therapeutic target in high-grade serous ovarian cancer (HGSOC). We evaluated the activity of different FOXM1 inhibitors in HGSOC cell models. RESULTS: We treated HGSOC and fallopian tube epithelial (FTE) cells with a panel of previously reported FOXM1 inhibitors. Based on drug potency, efficacy, and selectivity, determined through cell viability assays, we focused on two compounds, NB-73 and NB-115 (NB compounds), for further investigation. NB compounds potently and selectively inhibited FOXM1 with lesser effects on other FOX family members. NB compounds decreased FOXM1 expression via targeting the FOXM1 protein by promoting its proteasome-mediated degradation, and effectively suppressed FOXM1 gene targets at both the protein and mRNA level. At the cellular level, NB compounds promoted apoptotic cell death. Importantly, while inhibition of apoptosis using a pan-caspase inhibitor rescued HGSOC cells from NB compound-induced cell death, it did not rescue FOXM1 protein degradation, supporting that FOXM1 protein loss from NB compound treatment is specific and not a general consequence of cytotoxicity. Drug washout studies indicated that FOXM1 reduction was retained for at least 72 h post-treatment, suggesting that NB compounds exhibit long-lasting effects in HGSOC cells. NB compounds effectively suppressed both two-dimensional and three-dimensional HGSOC cell colony formation at sub-micromolar concentrations. Finally, NB compounds exhibited synergistic activity with carboplatin in HGSOC cells. CONCLUSIONS: NB compounds are potent, selective, and efficacious inhibitors of FOXM1 in HGSOC cells and are worthy of further investigation as HGSOC therapeutics.


Asunto(s)
Antineoplásicos , Apoptosis , Proteína Forkhead Box M1 , Neoplasias Ováricas , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/antagonistas & inhibidores , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/metabolismo , Supervivencia Celular/efectos de los fármacos , Clasificación del Tumor
19.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645081

RESUMEN

The estrogen receptor-α (ER) is thought to function only as a homodimer, but responds to a variety of environmental, metazoan, and therapeutic estrogens at sub-saturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations -receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining binding of the same ligand in crystal structures of ER in the agonist versus antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist versus antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric versus dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing new modes for ligand-dependent regulation of ER activity. Significance: The estrogen receptor-α (ER) regulates transcription in response to a hormonal milieu that includes low levels of estradiol, a variety of environmental estrogens, as well as ER antagonists such as breast cancer anti-hormonal therapies. While ER has been studied as a homodimer, the variety of ligand and receptor concentrations in different tissues means that the receptor can be occupied with two different ligands, with only one ligand in the dimer, or as a monomer. Here, we use X-ray crystallography and molecular dynamics simulations to reveal a new mode for ligand regulation of ER activity whereby sequence-identical homodimers can act as functional or conformational heterodimers having unique signaling characteristics, with ligand-selective allostery operating across the dimer interface integrating two different signaling outcomes.

20.
Theranostics ; 14(1): 249-264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164151

RESUMEN

Rationale: 17ß-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors.


Asunto(s)
Neoplasias , Tamoxifeno , Ratones , Animales , Tamoxifeno/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Células Endoteliales/metabolismo , Angiogénesis , Expresión Génica , Endotelio/metabolismo , Línea Celular Tumoral , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA