RESUMEN
BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína smad3/metabolismoRESUMEN
The fibroblast growth factor receptors comprise a family of related but individually distinct tyrosine kinase receptors. Within this family, FGFR2 is a key regulator in many biological processes, e.g., cell proliferation, tumorigenesis, metastasis, and angiogenesis. Heterozygous activating non-mosaic germline variants in FGFR2 have been linked to numerous autosomal dominantly inherited disorders including several craniosynostoses and skeletal dysplasia syndromes. We report on a girl with cutaneous nevi, ocular malformations, macrocephaly, mild developmental delay, and the initial clinical diagnosis of Schimmelpenning-Feuerstein-Mims syndrome, a very rare mosaic neurocutaneous disorder caused by postzygotic missense variants in HRAS, KRAS, and NRAS. Exome sequencing of blood and affected skin tissue identified the mosaic variant c.1647=/T > G p.(Asn549=/Lys) in FGFR2, upstream of the RAS signaling pathway. The variant is located in the tyrosine kinase domain of FGFR2 in a region that regulates the activity of the receptor and structural mapping and functional characterization revealed that it results in constitutive receptor activation. Overall, our findings indicate FGFR2-associated neurocutaneous syndrome as the accurate clinical-molecular diagnosis for the reported individual, and thereby expand the complex genotypic and phenotypic spectrum of FGFR-associated disorders. We conclude that molecular analysis of FGFR2 should be considered in the genetic workup of individuals with the clinical suspicion of a mosaic neurocutaneous condition, as the knowledge of the molecular cause might have relevant implications for genetic counseling, prognosis, tumor surveillance and potential treatment options.
Asunto(s)
Craneosinostosis , Síndromes Neurocutáneos , Nevo Sebáceo de Jadassohn , Femenino , Humanos , Síndromes Neurocutáneos/diagnóstico , Síndromes Neurocutáneos/genética , Genotipo , Mutación Missense , Nevo Sebáceo de Jadassohn/genética , Nevo Sebáceo de Jadassohn/patología , Craneosinostosis/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genéticaRESUMEN
BACKGROUND: Developmental and epileptic encephalopathies (DEEs) represent a group of severe neurological disorders characterised by an onset of refractory seizures during infancy or early childhood accompanied by psychomotor developmental delay or regression. DEEs are genetically heterogeneous with, to date, more than 80 different genetic subtypes including DEE31 caused by heterozygous missense variants in DNM1. METHODS: We performed a detailed clinical characterisation of two unrelated patients with DEE and used whole-exome sequencing to identify causative variants in these individuals. The identified variants were tested for cosegregation in the respective families. RESULTS: We excluded pathogenic variants in known, DEE-associated genes. We identified homozygous nonsense variants, c.97C>T; p.(Gln33*) in family 1 and c.850C>T; p.(Gln284*) in family 2, in the DNM1 gene, indicating that biallelic, loss-of-function pathogenic variants in DNM1 cause DEE. CONCLUSION: Our finding that homozygous, loss-of-function variants in DNM1 cause DEE expands the spectrum of pathogenic variants in DNM1. All parents who were heterozygous carriers of the identified loss-of-function variants were healthy and did not show any clinical symptoms, indicating that the type of mutation in DNM1 determines the pattern of inheritance.
Asunto(s)
Encefalopatías , Dinamina I , Mutación Missense , Encefalopatías/genética , Preescolar , Dinamina I/genética , Heterocigoto , Humanos , Mutación , Mutación Missense/genética , Secuenciación del ExomaRESUMEN
Colorectal cancer (CRC) incidence in young adults is rising. Identifying genetic risk factors is fundamental for the clinical management of patients and their families. This study aimed to identify clinically significant germline variants among young adults with CRC. Whole-exome sequencing data of blood-derived DNA from 133 unrelated young CRC patients (<55 years of age) underwent a comprehensive analysis of 133 cancer-predisposition/implicated genes. All patient tumors were evaluated for mismatch repair deficiency (dMMR). Among 133 patients (aged 16-54 years), 15% (20/133) had clinically actionable pathogenic or likely pathogenic (P/LP) variants in at least 1 well established cancer-predisposing gene: dMMR genes (6), MUTYH [bi-allelic (2), mono-allelic (3)], RNF43 (1), BMPR1A (1), BRCA2 (4), ATM (1), RAD51C (1), and BRIP1 (1). Five patients (4%) had variants in genes implicated in cancer but where the significance of germline variants in CRC risk is uncertain: GATA2 (1), ERCC2 (mono-allelic) (1), ERCC4 (mono-allelic) (1), CFTR (2). Fourteen (11%) had dMMR tumors. Eighteen (14%) reported a first-degree relative with CRC, but only three of these carried P/LP variants. Three patients with variants in polyposis-associated genes showed no polyposis (one each in MUTYH [bi-allelic], RNF43, and BMPR1A). Approximately one in five young adults in our series carried at least one P/LP variant in a cancer-predisposing/implicated gene; 80% of these variants are currently considered clinically actionable in a familial cancer setting. Family history and phenotype have limitations for genetic risk prediction; therefore multigene panel testing and genetic counseling are warranted for all young adults with CRC regardless of those two factors.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales , Mutación de Línea Germinal/genética , Adolescente , Adulto , Edad de Inicio , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Secuenciación del Exoma , Adulto JovenRESUMEN
Proteus syndrome is a very rare disorder with progressive, asymmetrical, and disproportionate overgrowth of body parts with a highly variable phenotype. It is associated with mosaicism for the recurrent heterozygous somatic gain-of-function variant c.49G>A (p.Glu17Lys) in the protein kinase AKT1. We report on a girl with a progressive intraosseous lipoma of the frontal bone and additional, nonspecific features including mild developmental delay, strabism, and a limbal dermoid of the left eye. She did not fulfill the criteria for a clinical diagnosis of Proteus syndrome. However, mutation analysis of AKT1 in a lipoma biopsy revealed this specific activating variant. Several cases of progressive intraosseous lipoma of the frontal bone have been reported in the literature. Only in two of these observations, a tentative diagnosis of Proteus syndrome was made, based on additional clinical features, although without molecular-genetic verification. We conclude that oligosymptomatic Proteus syndrome should be considered in progressive intraosseous lipoma, as recognition of this diagnosis has relevant implications for genetic counseling and opens novel treatment options with AKT1 inhibitors rather than surgical procedures.
Asunto(s)
Lipoma , Síndrome de Proteo , Femenino , Humanos , Lipoma/diagnóstico , Lipoma/genética , Mosaicismo , Síndrome de Proteo/diagnóstico , Síndrome de Proteo/genética , Síndrome de Proteo/patología , Proteínas Proto-Oncogénicas c-akt/genéticaRESUMEN
Bloom syndrome (BS) is an autosomal recessive disorder with characteristic clinical features of primary microcephaly, growth deficiency, cancer predisposition, and immunodeficiency. Here, we report the clinical and molecular findings of eight patients from six families diagnosed with BS. We identified causative pathogenic variants in all families including three different variants in BLM and one variant in RMI1. The homozygous c.581_582delTT;p.Phe194* and c.3164G>C;p.Cys1055Ser variants in BLM have already been reported in BS patients, while the c.572_573delGA;p.Arg191Lysfs*4 variant is novel. Additionally, we present the detailed clinical characteristics of two cases with BS in which we previously identified the biallelic loss-of-function variant c.1255_1259delAAGAA;p.Lys419Leufs*5 in RMI1. All BS patients had primary microcephaly, intrauterine growth delay, and short stature, presenting the phenotypic hallmarks of BS. However, skin lesions and upper airway infections were observed only in some of the patients. Overall, patients with pathogenic BLM variants had a more severe BS phenotype compared to patients carrying the pathogenic variants in RMI1, especially in terms of immunodeficiency, which should be considered as one of the most important phenotypic characteristics of BS.
Asunto(s)
Síndrome de Bloom , Microcefalia , Síndrome de Bloom/genética , Proteínas de Unión al ADN/genética , Genotipo , Humanos , Microcefalia/genética , Fenotipo , RecQ Helicasas/genéticaRESUMEN
The role of RNF43 as a cause of an inherited predisposition to colorectal cancer (CRC) is yet to be fully explored. This report presents our findings of two individuals with CRC from a single family carrying a likely-pathogenic inherited germline variant in RNF43. The proband (III:1) and the proband's mother (II:2) were diagnosed with mismatch repair proficient CRCs at the age of 50 years and 65 years, respectively. Both patients had BRAFV600E mutated colon tumours, indicating that the CRCs arose in sessile serrated lesions. The germline variant RNF43:c.375+1G>A was identified in both patients. RNA studies showed that this variant resulted in an aberrantly spliced transcript, which was predicted to encode RNF43:p.Ala126Ilefs*50 resulting in premature termination of protein synthesis and was classified as a likely-pathogenic variant. Our report adds further evidence to the hereditary role of RNF43 as a tumour suppressor gene in colorectal tumorigenesis and supports the inclusion of RNF43 as a gene of interest in the investigation of CRC predispositions outside the setting of serrated polyposis.
Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Ubiquitina-Proteína Ligasas/genética , Anciano , Alelos , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Familia , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Análisis de Secuencia de ADN , Secuenciación del ExomaRESUMEN
AIMS: Malignant germ cell tumours (GCTs) of the testis are rare neoplasms, but the most common solid malignancies in young men. World Health Organization guidelines divide GCTs into five types, for which numerous immunohistochemical markers allow exact histological subtyping in the majority of cases. In contrast, a germ cell origin is often hard to prove in metastatic GCTs that have developed so-called somatic malignant transformation. A high percentage, up to 89%, of GCTs are characterised by the appearance of isochromosome 12p [i(12p)]. Fluorescence in-situ hybridisation has been the most common diagnostic method for the detection of i(12p) so far, but has the disadvantages of being time-consuming, demanding, and not being a stand-alone method. The aim of the present study was to establish a quantitative real-time polymerase chain reaction assay as an independent method for detecting i(12p) and regional amplifications of the short arm of chromosome 12 by using DNA extracted from formalin-fixed paraffin-embedded tissue. METHODS AND RESULTS: A cut-off value to distinguish between the presence and absence of i(12p) was established in a control set consisting of 36 tumour-free samples. In a training set of 149 GCT samples, i(12p) was detectable in 133 tumours (89%), but not in 16 tumours (11%). In a test set containing 27 primary and metastatic GCTs, all 16 tumours with metastatic spread and/or somatic malignant transformation were successfully identified by the detection of i(12p). CONCLUSION: In summary, the qPCR assay presented here can help to identify, further characterise and assign a large proportion of histologically inconclusive malignancies to a GCT origin.
Asunto(s)
Isocromosomas/genética , Neoplasias de Células Germinales y Embrionarias/genética , Transformación Celular Neoplásica , Humanos , Hibridación Fluorescente in Situ , Neoplasias de Células Germinales y Embrionarias/patología , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Cell division cycle 42 (CDC42) is a small Rho GTPase, which serves as a fundamental intracellular signal node regulating actin cytoskeletal dynamics and several other integral cellular processes. CDC42-associated disorders encompass a broad clinical spectrum including Takenouchi-Kosaki syndrome, autoinflammatory syndromes and neurodevelopmental phenotypes mimicking RASopathies. Dysregulation of CDC42 signaling by genetic defects in either DOCK6 or ARHGAP31 is also considered to play a role in the pathogenesis of Adams-Oliver syndrome (AOS). Here, we report a mother and her child carrying the previously reported pathogenic CDC42 variant c.511G>A (p.Glu171Lys). Both affected individuals presented with short stature, distinctive craniofacial features, pectus deformity as well as heart and eye anomalies, similar to the recently described Noonan syndrome-like phenotype associated with this variant. Remarkably, one of the patients additionally exhibited aplasia cutis congenita of the scalp. Multi-gene panel sequencing of the known AOS-causative genes and whole exome sequencing revealed no second pathogenic variant in any disease-associated gene explaining the aplasia cutis phenotype in our patient. This observation further expands the phenotypic spectrum of CDC42-associated disorders and underscores the role of CDC42 dysregulation in the pathogenesis of aplasia cutis congenita.
Asunto(s)
Anomalías Múltiples/genética , Displasia Ectodérmica/genética , Mutación Missense , Mutación Puntual , Enfermedades Cutáneas Vasculares/genética , Telangiectasia/congénito , Proteína de Unión al GTP cdc42/deficiencia , Adulto , Sustitución de Aminoácidos , Anomalías Craneofaciales/genética , Enanismo/genética , Anomalías del Ojo/genética , Femenino , Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Humanos , Recién Nacido , Livedo Reticularis , Linaje , Fenotipo , Cuero Cabelludo/patología , Telangiectasia/genética , Proteína de Unión al GTP cdc42/genéticaRESUMEN
BACKGROUND: The role of the BARD1 gene in breast cancer (BC) and ovarian cancer (OC) predisposition remains elusive, as published case-control investigations have revealed controversial results. We aimed to assess the role of deleterious BARD1 germline variants in BC/OC predisposition in a sample of 4920 BRCA1/2-negative female BC/OC index patients of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). METHODS: A total of 4469 female index patients with BC, 451 index patients with OC, and 2767 geographically matched female control individuals were screened for loss-of-function (LoF) mutations and potentially damaging rare missense variants in BARD1. All patients met the inclusion criteria of the GC-HBOC for germline testing and reported at least one relative with BC or OC. Additional control datasets (Exome Aggregation Consortium, ExAC; Fabulous Ladies Over Seventy, FLOSSIES) were included for the calculation of odds ratios (ORs). RESULTS: We identified LoF variants in 23 of 4469 BC index patients (0.51%) and in 36 of 37,265 control individuals (0.10%), resulting in an OR of 5.35 (95% confidence interval [CI] = 3.17-9.04; P < 0.00001). BARD1-mutated BC index patients showed a significantly younger mean age at first diagnosis (AAD; 42.3 years, range 24-60 years) compared with the overall study sample (48.6 years, range 17-92 years; P = 0.00347). In the subgroup of BC index patients with an AAD < 40 years, an OR of 12.04 (95% CI = 5.78-25.08; P < 0.00001) was observed. An OR of 7.43 (95% CI = 4.26-12.98; P < 0.00001) was observed when stratified for an AAD < 50 years. LoF variants in BARD1 were not significantly associated with BC in the subgroup of index patients with an AAD ≥ 50 years (OR = 2.29; 95% CI = 0.82-6.45; P = 0.11217). Overall, rare and predicted damaging BARD1 missense variants were significantly more prevalent in BC index patients compared with control individuals (OR = 2.15; 95% CI = 1.26-3.67; P = 0.00723). Neither LoF variants nor predicted damaging rare missense variants in BARD1 were identified in 451 familial index patients with OC. CONCLUSIONS: Due to the significant association of germline LoF variants in BARD1 with early-onset BC, we suggest that intensified BC surveillance programs should be offered to women carrying pathogenic BARD1 gene variants.
Asunto(s)
Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Mutación con Pérdida de Función , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Oportunidad Relativa , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/genética , Prevalencia , Adulto JovenRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, emphasizing the urgent need for effective therapies. The predominant driver in PDAC is mutated KRAS proto-oncogene, KRA, present in 90% of patients. The emergence of direct KRAS inhibitors presents a promising avenue for treatment, particularly those targeting the KRASG12C mutated allele, which show encouraging results in clinical trials. However, the development of resistance necessitates exploring potent combination therapies. Our objective was to identify effective KRASG12C-inhibitor combination therapies through unbiased drug screening. Results revealed synergistic effects with son of sevenless homolog 1 (SOS1) inhibitors, tyrosine-protein phosphatase non-receptor type 11 (PTPN11)/Src homology region 2 domain-containing phosphatase-2 (SHP2) inhibitors, and broad-spectrum multi-kinase inhibitors. Validation in a novel and unique KRASG12C-mutated patient-derived organoid model confirmed the described hits from the screening experiment. Our findings propose strategies to enhance KRASG12C-inhibitor efficacy, guiding clinical trial design and molecular tumor boards.
RESUMEN
Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.
Asunto(s)
División Celular , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Animales , Femenino , Humanos , Masculino , Ratones , Polaridad Celular , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genéticaRESUMEN
Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.
RESUMEN
In this study, primary murine prostate cancer (PCa) cells were derived using the well-established TRAMP model. These PCa cells were treated with the histone deacetylase inhibitor, valproic acid (VPA), and we demonstrated that VPA treatment has an antimigrative, antiinvasive and antiproliferative effect on PCa cells. Using microarray analyses, we discovered several candidate genes that could contribute to the cellular effects we observed. In this study, we could demonstrate that VPA treatment of PCa cells causes the re-expression of cyclin D2, a known regulator that is frequently lost in PCa as we could show using immunohistochemical analyses on PCa specimens. We demonstrate that VPA specifically induces the re-expression of cyclin D2, one of the highly conserved D-type cyclin family members, in several cancer cell lines with weak or no cyclin D2 expression. Interestingly, VPA treatment had no effect in fibroblasts, which typically have high basal levels of cyclin D2 expression. The re-expression of cyclin D2 observed in PCa cells is activated by increased histone acetylation in the promoter region of the Ccnd2 gene and represents one underlying molecular mechanism of VPA treatment that inhibits the proliferation of cancer cells. Altogether, our results confirm that VPA is an anticancer therapeutic drug for the treatment of tumors with epigenetically repressed cyclin D2 expression.
Asunto(s)
Antineoplásicos/farmacología , Ciclina D2/biosíntesis , Neoplasias de la Próstata/tratamiento farmacológico , Ácido Valproico/farmacología , Acetilación/efectos de los fármacos , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Ciclina D2/genética , Ciclina D2/metabolismo , Células HEK293 , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Invasividad Neoplásica , Regiones Promotoras Genéticas/efectos de los fármacos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patologíaRESUMEN
Background: Benefits and challenges resulting from advances in genetic diagnostics are two sides of the same coin. Facilitation of a correct and timely diagnosis is paralleled by challenges in interpretation of variants of unknown significance (VUS). Focusing on an individual VUS-re-classification pipeline, this study offers a diagnostic approach for clinically suspected hereditary muscular dystrophy by combining the expertise of an interdisciplinary team. Methods: In a multi-step approach, a thorough phenotype assessment including clinical examination, laboratory work, muscle MRI and histopathological evaluation of muscle was performed in combination with advanced Next Generation Sequencing (NGS). Different in-silico tools and prediction programs like Alamut, SIFT, Polyphen, MutationTaster and M-Cap as well as 3D- modeling of protein structure and RNA-sequencing were employed to determine clinical significance of the LAMA2 variants. Results: Two previously unknown sequence alterations in LAMA2 were detected, a missense variant was classified initially according to ACMG guidelines as a VUS (class 3) whereas a second splice site variant was deemed as likely pathogenic (class 4). Pathogenicity of the splice site variant was confirmed by mRNA sequencing and nonsense mediated decay (NMD) was detected. Combination of the detected variants could be associated to the LGMDR23-phenotype based on the MRI matching and literature research. Discussion: Two novel variants in LAMA2 associated with LGMDR23-phenotype are described. This study illustrates challenges of the genetic findings due to their VUS classification and elucidates how individualized diagnostic procedure has contributed to the accurate diagnosis in the spectrum of LGMD.
RESUMEN
Variants in transcription factor p63 have been linked to several autosomal dominantly inherited malformation syndromes. These disorders show overlapping phenotypic characteristics with various combinations of the following features: ectodermal dysplasia, split-hand/foot malformation/syndactyly, lacrimal duct obstruction, hypoplastic breasts and/or nipples, ankyloblepharon filiforme adnatum, hypospadias and cleft lip/palate. We describe a family with six individuals presenting with a striking novel phenotype characterized by a furrowed or cleft tongue, a narrow face, reddish hair, freckles and various foot deformities. Whole-exome sequencing (WES) identified a novel heterozygous variant, c.3G>T, in TP63 affecting the translation initiation codon (p.1Met?). Sanger sequencing confirmed dominant inheritance of this unique variant in all six affected family members. In summary, our findings indicate that heterozygous variants in TP63 affecting the first translation initiation codon result in a novel phenotype dominated by a cleft tongue, expanding the complex genotypic and phenotypic spectrum of TP63-associated disorders.
Asunto(s)
Labio Leporino , Fisura del Paladar , Displasia Ectodérmica , Labio Leporino/genética , Fisura del Paladar/genética , Codón Iniciador , Displasia Ectodérmica/genética , Humanos , Masculino , Lengua , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Pancreatic Ductal Adenocarcinoma (PDAC) represents a lethal malignancy with a consistently poor outcome. Besides mutations in PDAC driver genes, the aggressive tumor biology of the disease and its remarkable therapy resistance are predominantly installed by potentially reversible epigenetic dysregulation. However, epigenetic regulators act in a context-dependent manner with opposing implication on tumor progression, thus critically determining the therapeutic efficacy of epigenetic targeting. Herein, we aimed at exploring the molecular prerequisites and underlying mechanisms of oncogenic Enhancer of Zeste Homolog 2 (EZH2) activity in PDAC progression. Preclinical studies in EZH2 proficient and deficient transgenic and orthotopic in vivo PDAC models and transcriptome analysis identified the TP53 status as a pivotal context-defining molecular cue determining oncogenic EZH2 activity in PDAC. Importantly, the induction of pro-apoptotic gene signatures and processes as well as a favorable PDAC prognosis upon EZH2 depletion were restricted to p53 wildtype (wt) PDAC subtypes. Mechanistically, we illustrate that EZH2 blockade de-represses CDKN2A transcription for the subsequent posttranslational stabilization of p53wt expression and function. Together, our findings suggest an intact CDKN2A-p53wt axis as a prerequisite for the anti-tumorigenic consequences of EZH2 depletion and emphasize the significance of molecular stratification for the successful implementation of epigenetic targeting in PDAC.
RESUMEN
STAG2 is a component of the large, evolutionarily highly conserved cohesin complex, which has been linked to various cellular processes like genome organization, DNA replication, gene expression, heterochromatin formation, sister chromatid cohesion, and DNA repair. A wide spectrum of germline variants in genes encoding subunits or regulators of the cohesin complex have previously been identified to cause distinct but phenotypically overlapping multisystem developmental disorders belonging to the group of cohesinopathies. Pathogenic variants in STAG2 have rarely been implicated in an X-linked cohesinopathy associated with undergrowth, developmental delay, and dysmorphic features. Here, we describe for the first time a mosaic STAG2 variant in an individual with developmental delay, microcephaly, and hemihypotrophy of the right side. We characterized the grade of mosaicism by deep sequencing analysis on DNA extracted from EDTA blood, urine and buccal swabs. Furthermore, we report an additional female with a novel de novo splice variant in STAG2. Interestingly, both individuals show supernumerary nipples, a feature that has not been reported associated to STAG2 before. Remarkably, additional analysis of STAG2 transcripts in both individuals showed only wildtype transcripts, even after blockage of nonsense-mediated decay using puromycin in blood lymphocytes. As the phenotype of STAG2-associated cohesinopathies is dominated by global developmental delay, severe microcephaly, and brain abnormalities, we investigated the expression of STAG2 and other related components of the cohesin complex during Bioengineered Neuronal Organoids (BENOs) generation by RNA sequencing. Interestingly, we observed a prominent expression of STAG2, especially between culture days 0 and 15, indicating an essential function of STAG2 in early brain development. In summary, we expand the genotypic and phenotypic spectrum of STAG2-associated cohesinopathies and show that BENOs represent a promising model to gain further insights into the critical role of STAG2 in the complex process of nervous system development.
RESUMEN
Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.