Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chemistry ; 30(11): e202302138, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37957130

RESUMEN

Three different devices: ball mill, hot stage melting, and magic angle spinning (MAS) NMR rotor were used for the preparation of ethenzamide (ET) cocrystals with glutaric acid (GLU), ethylmalonic acid (EMA) and maleic acid (MAL) as coformers. In each case, well-defined binary systems (ET:EMA, ET:GLU, ET:MAL) were obtained. The common features of the two solvent free methods of cocrystal formation (grinding, melting) are presented on the basis of arguments obtained by solid state NMR spectroscopy. Thermal analysis (Differential Scanning Calorimetry) proved that the eutectic phase arises over a wide range of molar ratios of components for each of the binary systems. NMR techniques, supported by theoretical calculations, allowed to provide details about the pathway of the reaction mechanism with atomic accuracy. It was found that the formation of ET cocrystals is a complex process that requires five steps. Each step has been recognized and described. Variable temperature 1D and 2D MAS NMR experiments allowed to track physicochemical processes taking place in a molten state. Moreover, it was found that in a multicomponent mixture consisting of all four components, ET, EMA, GLU, and MAL, ET in the molten phase behaves as a specific selector choosing only one partner to form binary cocrystals according to energy preferences. The process of exchange of coformers in binary systems during grinding, melting, and NMR measurements is described. The stabilization energies (Estab ) and molecular electrostatic potential (MEP) maps computed for the cocrystals under discussion and their individual components rationalize the selection rules and explain the relationships between individual species.

2.
Chemistry ; : e202400177, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644348

RESUMEN

We report an idea for the synthesis of oligopeptides using a solvent-free ball milling approach. Our concept is inspired by block play, in which it is possible to construct different objects using segments (blocks) of different sizes and lengths. We prove that by having a library of short peptides and employing the ball mill mechanosynthesis (BMMS) method, peptides can be easily coupled to form different oligopeptides with the desired functional and biological properties. Optimizing the BMMS process we found that the best yields we obtained when TBTU and cesium carbonate were used as reagents. The role of Cs2CO3 in the coupling mechanism was followed on each stage of synthesis by 1H, 13C and 133Cs NMR employing Magic Angle Spinning (MAS) techniques. It was found that cesium carbonate acts not only as a base but is also responsible for the activation of substrates and intermediates. The unique information about the BMMS mechanism is based on the analysis of 2D NMR data. The power of BMMS is proved by the example of different peptide combinations, 2+2, 3+2, 4+2, 5+2 and 4+4. The tetra-, penta-, hexa-, hepta- and octapeptides obtained under this project were fully characterized by MS and NMR techniques.

3.
Chemphyschem ; 24(7): e202200884, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36507917

RESUMEN

In this work, we present results for loading of well-defined binary systems (cocrystal, solid solution) and untreated materials (physical mixtures) into the voids of MCM-41 mesoporous silica particles employing three different filling methods. The applied techniques belong to the group of "wet methods" (diffusion supported loading - DiSupLo) and "solvent-free methods" (mechanical ball-mill loading - MeLo, thermal solvent free - TSF). As probes for testing the guest1-guest2 interactions inside the MCM-41 pores we employed the benzoic acid (BA), perfluorobenzoic acid (PFBA), and 4-fluorobenzoic acid (4-FBA). The guests intermolecular contacts and phase changes were monitored employing magic angle spinning (MAS) NMR Spectroscopy techniques and powder X-ray diffraction (PXRD). Since mesoporous silica materials are commonly used in drug delivery system research, special attention has been paid to factors affecting guest release kinetics. It has been proven that not only the content and composition of binary systems, but also the loading technique have a strong impact on the rate of guests release. Innovative methods of visualizing differences in release kinetics are presented.

4.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894841

RESUMEN

This work presents the results of research on obtaining chitosan (CS) films containing on their surface ciprofloxacin (CIP). A unique structure was obtained that not only gives new properties to the films, but also changes the way of coverage and structure of the surface. The spectroscopic test showed that in the process of application of CIP on the surface of CS film, CIP was converted from its crystalline form to an amorphic one, hence improving its bioavailability. This improved its scope of microbiological effect. The research was carried out on the reduction of CIP concentration during the process of CIP adhesion to the surface of chitosan films. The antibacterial activity of the CS films with and without the drug was evaluated in relation to Escherichia coli and Staphylococcus aureus, as well as Candida albicans and Penicillium expansum. Changes in the morphology and roughness of membrane surfaces after the antibacterial molecule adhesion process were tested with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Structural analysis of CS and its modifications were confirmed with Fourier-transform spectroscopy in the infrared by an attenuated total reflectance of IR radiation (FTIR-ATR) and solid-state nuclear magnetic resonance (NMR).


Asunto(s)
Quitosano , Quitosano/química , Ciprofloxacina/farmacología , Ciprofloxacina/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/química , Espectroscopía de Resonancia Magnética
5.
Chemistry ; 28(65): e202202005, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35993798

RESUMEN

In this work a relationship between the crystal form and morphology and rheological properties of peptide-based hydrogels is examined. We show, that under favorable circumstances a correlation between a starting solid material and a self-assembly processes in solution can exist, leading to different properties of a resulting soft matter. This observation, together with an in-depth analysis of the influence of stereochemistry of self-assembled (ll) and (dl) Tyr-Tyr cyclic dipeptides (cYY) on the observed relationship between gelation and crystallization allowed us to gain a deeper understanding of the peptide hydrogelation processes at a molecular level, using liquid state NMR, rheological studies and scanning electron microscopy. In the course of our studies, several crystal forms of (ll)-cYY has been discovered and described in details using single crystal X-ray diffraction, as well as advanced solid state NMR, X-ray diffraction of powders, thermal analysis, FTIR, circular dichroism and crystal structure prediction (CSP) calculations. Subsequently, we found that while (ll)-cYY easily assembles into hydrogels with different properties depending on the starting solid form, (dl)-cYY always precipitated as one crystal form in the tested conditions. Molecular-level justification for this observation is given.


Asunto(s)
Dipéptidos , Hidrogeles , Hidrogeles/química , Dipéptidos/química , Péptidos , Dicroismo Circular
6.
Molecules ; 27(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35566223

RESUMEN

Echimidine is the main pyrrolizidine alkaloid of Echium plantagineum L., a plant domesticated in many countries. Because of echimidine's toxicity, this alkaloid has become a target of the European Food Safety Authority regulations, especially in regard to honey contamination. In this study, we determined by NMR spectroscopy that the main HPLC peak purified from zinc reduced plant extract with an MS [M + H]+ signal at m/z 398 corresponding to echimidine (1), and in fact also represents an isomeric echihumiline (2). A third isomer present in the smallest amount and barely resolved by HPLC from co-eluting (1) and (2) was identified as hydroxymyoscorpine (3). Before the zinc reduction, alkaloids (1) and (2) were present mostly (90%) in the form of an N-oxide, which formed a single peak in HPLC. This is the first report of finding echihumiline and hydroxymyoscorpine in E. plantagineum. Retroanalysis of our samples of E. plantagineum collected in New Zealand, Argentina and the USA confirmed similar co-occurrence of the three isomeric alkaloids. In rat hepatocyte primary culture cells, the alkaloids at 3 to 300 µg/mL caused concentration-dependent inhibition of hepatocyte viability with mean IC50 values ranging from 9.26 to 14.14 µg/mL. Our discovery revealed that under standard HPLC acidic conditions, echimidine co-elutes with its isomers, echihumiline and to a lesser degree with hydroxymyoscorpine, obscuring real alkaloidal composition, which may have implications for human toxicity.


Asunto(s)
Echium , Alcaloides de Pirrolicidina , Animales , Echium/química , Hepatocitos/química , Alcaloides de Pirrolicidina/química , Ratas , Zinc
7.
Chemistry ; 26(58): 13264-13273, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32567718

RESUMEN

A well-defined and stable "AB" binary system in the presence of "C" a crystalline synthon ground in a ball mill undergoes selective transformation in the solid state according to the equation AB+C→AC+B. When the amount of C is increased two times then the equation AB+2C→AC+BC is valid. The other variants are more complex. The pathway BC+A is allowed and leads to the AC and B products. The pathway AC+B is not preferred, and no transformation is observed. These non-obvious correlations were observed for cocrystal of barbituric acid (BA):thiobarbituric acid (TBA) recently reported by Shemchuk et al. (Chem. Commun. 2016, 52, 11815-11818) in the presence of 1-hydroxy-4,5-dimethyl-imidazole 3-oxide (HIMO). This synthon shows high affinity for the BA0.5 TBA0.5 cocrystal as well for its individual components, BA and TBA. Single-quantum, double-quantum (SQ-DQ) 2D 1 H very fast MAS NMR with a spinning rate of 60 kHz was employed as a basic and most diagnostic tool for the study of cocrystals transformations. Analysis of the experimental data was supported by theoretical calculations, including computation of the stabilization energy, Estab , defined as the energy difference between the energy of a co-crystal and the sum of the energies of particular components in the respective stoichiometric ratios. Two mechanisms of synthon replacement have been proposed. Pathway 1 assumes a concerted mechanism of substitution. In this approach, synthon attack is synchronized in time with the departure of one of the components of the binary system. Pathway 2 implies a non-concerted process, with an intermediate stage in which three separate components are present. Evidence suggesting a preference for Pathway 2 is shown.

8.
Chemistry ; 26(7): 1558-1566, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31691377

RESUMEN

Mechanical grinding/milling can be regarded as historically the first technology for changing the properties of matter. Mechanically activated molecular units (mechanophores) can be present in various structures: polymers, macromolecules, or small molecules. However, only polymers have been reported to effectively transduce energy to mechanophores, which induces breakage of covalent bonds. In this paper, a second possibility is presented-molecular capsules as stress-sensitive units. Mechanochemical encapsulation of fullerenes in cystine-based covalent capsules indicates that complexation takes place in the solid state, despite the fact that the capsules do not possess large enough entrance portals. By using a set of solvent-free MALDI (sf-MALDI) and solid-state NMR (ss-NMR) experiments, it has been proven that encapsulation proceeds during milling and in this process hydrazones and disulfides get activated for breakage, exchange, and re-forming. The capsules are porous and therefore prone to collapse under solvent-free conditions and their conformational rigidity promotes the collapse by the breaking of covalent bonds.

9.
Molecules ; 25(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679898

RESUMEN

Aronia melanocarpa (Michx.) Elliott's (chokeberry) besides anthocyanins contains significant amounts of hydroxycinnamic acids: Chlorogenic and its isomer neochlorogenic acid. They exhibit antioxidant, anti-inflammatory, antidiabetic, and antibacterial activities, thus they can have a significant impact on the health-promoting properties of Aronia. The aim of our research was to determine the changes in the content of chlorogenic acids (CGAs) and anthocyanins during fruit development and ripening, with a particular emphasis on acids. Aronia fruit samples were collected from July to October on two organic farms in Poland. The chemical composition of the extracts was determined by NMR spectroscopy and HPLC-DAD. 1H-NMR and HPLC data were analyzed using chemometric analysis and multivariate statistics (PCA). The results showed that the content of chlorogenic acids and anthocyanins changes during ripening and depends on the time of harvest and the region of cultivation. A correlation between the time of CGAs reduction and the appearance of anthocyanins was also noticed. The result of our research was also a database in the form of NMR parameters, which allows analysis of the metabolite profile and tracking of its changes. The 1H-NMR spectrum showing anthocyanin and CGA resonance can be considered the Aronia berry fingerprint.


Asunto(s)
Antocianinas/química , Ácido Clorogénico/química , Frutas/química , Photinia/química , Fitoquímicos/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética
10.
Solid State Nucl Magn Reson ; 97: 17-24, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30508738

RESUMEN

Piracetam, a popular nootropic drug, widely used in the treatment of age-associated mental decline and disorders of the nervous system such as Alzheimer's disease and dementia exists under normal pressure in three polymorphic forms (P1, P2 and P3) of different stability. In this work the relative stability of piracetam polymorphs depending on the temperature was studied using the ssNMR spectroscopy combined with ab initio DFT calculations. The ssNMR spectroscopy enabled the analysis of polymorphic phase transition in the case of pure active substance as well as polymorphic form identification in the analysis of the commercial solid dosage formulations. Quantum chemical calculations of phonon density of states were performed to obtain the temperature dependence of the enthalpy, entropy and free energy of the piracetam polymorphs in a quasi-harmonic approximation. GIPAW NMR calculations combined with molecular dynamics were performed to support the chemical shift assignment. The obtained results showed that DFT calculations can be used not only to obtain the NMR parameters but also to predict the influence of the temperature on the stability order of the polymorphic forms of molecular crystals.


Asunto(s)
Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética , Piracetam/química , Conformación Molecular , Simulación de Dinámica Molecular , Transición de Fase , Temperatura
11.
Mol Pharm ; 14(5): 1800-1810, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28403609

RESUMEN

Grinding and melting methods were employed for synthesis of pharmaceutical cocrystals formed by racemic (R/S) and entiomeric (S) ibuprofen (IBU) and nicotinamide (NA) as coformer. Obtained (R/S)-IBU:NA and (S)-IBU:NA cocrystals were fully characterized by means of advanced one- and two-dimensional solid state nuclear magnetic resonance (SS NMR) techniques with very fast magic angle spinning (MAS) at 60 kHz. The distinction in molecular packing and specific hydrogen bonding pattern was clearly recognized by analysis of 1H, 13C, and 15N spectra. It is concluded from these studies that both methods (grinding and melting) provide exactly the same, specific forms of cocrystals. Thermal solvent-free (TSF) approach was used for loading of (R/S)-IBU:NA and (S)-IBU:NA into the pores of MCM-41 mesoporous silica particle (MSP). The progress and efficiency of this process was analyzed by NMR spectroscopy. It has been confirmed that TSF method is an effective and safe technique of filling the MSP pores with active pharmaceutical ingredients (APIs). By analyzing the NMR results, it has been further proved that excess of IBU and NA components, which are not embedded into the pores during melting and cooling, crystallize on the MCM-41 walls preserving very specific arrangement, characteristic for crystalline samples. By investigating kinetic of release for (R/S)-IBU/MCM-41, (S)-IBU:NA/MCM-41, and (R/S)-IBU:NA/MCM-41 samples containing active components exclusively inside of the pores, it was revealed that release of IBU is much faster for the first of the samples compared to those containing IBU and NA inside the pores. The hypothesis that the rate of release of API can be controlled by specific composition of cocrystal embedded into the MSP pore was further supported by study of (R/S)-IBU:BA/MCM-41 sample with benzoic acid (BA) as coformer.


Asunto(s)
Ibuprofeno/química , Espectroscopía de Resonancia Magnética/métodos , Niacinamida/química , Dióxido de Silicio/química , Rastreo Diferencial de Calorimetría , Cristalización , Nanopartículas/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
12.
Biomacromolecules ; 18(10): 3418-3431, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28872843

RESUMEN

We present biocompatible hydrogel systems suitable for biomineralization processes based on hyperbranched polyglycidol cross-linked with acrylamide copolymer bearing carbonyl-coordinated boronic acid. At neutral pH, diol functional groups of HbPGL react with boronic acid of polyacrylamide to generate 3D network in water by the formation of boronic ester cross-links. The dynamic associative/dissociative characteristics of the cross-links makes the network reversible. The presented hydrogels display self-healing properties and are injectable, facilitating gap filing of bone tissue. The 1H HR MAS DOSY NMR studies reveal that acrylamide copolymer plays the role of the network framework, whereas HbPGL macromolecules, due to their compact structure, move between reactive sites of the copolymer. The influence of the copolymer macromolecules entanglements and overall polymer concentrations on macromolecules mobility and stress relaxation processes is investigated. The process of hydrogel biomineralization results from hydrolysis of 1-naphthyl phosphate calcium salt catalyzed by encapsulation in hydrogel alkaline phosphatase. The environment of the hydrogel is entirely neutral toward the enzyme. However, the activity of alkaline phosphatase encapsulated within the hydrogel structure is diffusion-limited. In this article, based on the detailed characteristics of three model hydrogel systems, we demonstrate the influence of the hydrogel permeability on the encapsulated enzyme activity and calcium phosphate formation rate. The 1H HR MAS DOSY NMR is used to monitor diffusion low-molecular weight compound within hydrogels, whereas 31P HR MAS NMR facilitates monitoring of the progress of biomineralization in situ within hydrogels. The results show a direct correlation between low molecular diffusivity in hydrogels and network dynamics. We demonstrate that the morphology of in situ-generated calcium phosphate within three model HbPGL/poly(AM-ran-APBA) hydrogels of different low molecular permeability varies substantially from sparsely deployed large, well-defined crystals to an even distribution within the polymers polycrystalline continuous network.


Asunto(s)
Cementos para Huesos/síntesis química , Fosfatos de Calcio/química , Hidrogeles/química , Glicoles de Propileno/química , Acrilamida/química , Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Cementos para Huesos/química , Reactivos de Enlaces Cruzados/química
13.
J Nat Prod ; 80(2): 415-426, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28231711

RESUMEN

Peanut skins are a rich source of oligomeric and polymeric procyanidins. The oligomeric fractions are dominated by dimers, trimers, and tetramers. A multistep chromatographic fractionation led to the isolation of four new A-type procyanidins of tri- and tetrameric structures. The structures of the new trimers were defined by NMR, electronic circular dichroism, and MS data as epicatechin-(4ß→8,2ß→O→7)-epicatechin-(4ß→8,2ß→O→7)-catechin, peanut procyanidin B (3), and epicatechin-(4ß→8,2ß→O→7)-epicatechin-(4ß→6)-catechin, peanut procyanidin C (4). The new tetramers were defined as epicatechin-(4ß→8,2ß→O→7)-epicatechin-(4ß→6)-epicatechin-(4ß→8,2ß→O→7)-catechin, peanut procyanidin E (1), and epicatechin-(4ß→8,2ß→O→7)-epicatechin-(4ß→6)-epicatechin-(4ß→8,2ß→O→7)-epicatechin, peanut procyanidin F (2). In addition, both A-type dimers A1, epicatechin-(4ß→8,2ß→O→7)-catechin, and A2, epicatechin-(4ß→8,2ß→O→7)-epicatechin, as well as two known peanut trimers, ent-epicatechin-(4ß→6)-epicatechin-(4ß→8,2ß→O→7)-catechin, peanut procyanidin A (5), and epicatechin-(4ß→8)-epicatechin-(4ß→8,2ß→O→7)-catechin, peanut procyanidin D (6), were also isolated. Dimer A1, the four trimers, and two tetramers were evaluated for anti-inflammatory activity in an in vitro assay, in which LPS-stimulated macrophages were responding with secretion of TNF-α, a pro-inflammatory cytokine. Tetramer F (2) was the most potent, suppressing TNF-α secretion to 82% at 8.7 µM (10 µg/mL), while tetramer E (1) at the same concentrations caused a 4% suppression. The results of the TNF-α secretion inhibition indicate that small structural differences, as in peanut procyanidin tetramers E and F, can be strongly differentiated in biological systems.


Asunto(s)
Arachis/química , Biflavonoides/química , Biflavonoides/aislamiento & purificación , Catequina/química , Catequina/aislamiento & purificación , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Factor de Necrosis Tumoral alfa/efectos de los fármacos
14.
Org Biomol Chem ; 12(48): 9837-44, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25355183

RESUMEN

A-type procyanidin trimers cinnamtannin B-1, cinnamtannin D-1, lindetannin, and aesculitannin B were studied in terms of their conformation and interaction with four solvents: methanol, acetone, DMSO and pyridine. The experiments demonstrated that for each trimer there are two principal conformers observable in the NMR. The ratio of the conformers (rotamers) depends on the structure of a given trimer as well as on the solvent used for NMR measurements. The DFT calculations (B3LYP/6-31G(d,p)) proved the presence of two main conformers to be the result of a steric hindrance that prevents free rotation along the B-type interflavan bond. An analysis of the solvent-procyanidin interactions showed that the strong electron donating solvents, pyridine and DMSO, favor different conformers from methanol and acetone, which prefer the lowest-energy gas phase conformer. These findings are in line with predictions of DFT/M06-2X calculations with the inclusion of the thermal corrections. The variations in the rotamer ratios in the studied solvents correlate with the solvent's capacity to induce local changes in the electron density of the particular procyanidin trimer.


Asunto(s)
Proantocianidinas/síntesis química , Conformación Molecular , Proantocianidinas/química , Teoría Cuántica
15.
Solid State Nucl Magn Reson ; 57-58: 2-16, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24398051

RESUMEN

Recent progress in the application of solid-state NMR (SS NMR) spectroscopy in structural studies of active pharmaceutical ingredients (APIs) embedded in different drug carriers is detailed. This article is divided into sections. The first part reports short characterization of the nanoparticles and microparticles that can be used as drug delivery systems (DDSs). The second part shows the applicability of SS NMR to study non-steroidal anti-inflammatory drugs (NSAIDs). In this section, problems related to API-DDS interactions, morphology, local molecular dynamics, nature of inter- or intramolecular connections, and pore filling are reviewed for different drug carriers (e.g. mesoporous silica nanoparticles (MSNs), cyclodextrins, polymeric matrices and others). The third and fourth sections detail the recent applications of SS NMR for searching for antibiotics and anticancer drugs confined in zeolites, MSNs, amorphous calcium phosphate and other carriers.


Asunto(s)
Portadores de Fármacos/química , Espectroscopía de Resonancia Magnética/métodos , Preparaciones Farmacéuticas/química , Antibacterianos/química , Antiinflamatorios no Esteroideos/química , Antifúngicos/química , Humanos
16.
J Sci Food Agric ; 94(2): 246-55, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23712445

RESUMEN

BACKGROUND: Herbhoneys, relatively new bee products, are expected to have interesting medicinal properties. However, there is still a lack of data concerning their composition and antioxidant properties. ¹H and ¹³C NMR spectroscopy coupled with chemometric analysis (PCA and PLS-DA) and antioxidant assays (DPPH-ESR and ORAC-FL) were used to study 25 samples of Polish herbhoneys and honeys. RESULTS: Antioxidant activity varied among the samples. The best properties were exhibited by cocoa and instant coffee herbhoneys. The contents of total polyphenols and total carotenoids in the studied samples were found to be 70-1340 mg GAE kg⁻¹ and 0-28.05 mg kg⁻¹ respectively. No significant differences between herbhoney and honey samples were found in their sugar profiles. The PCA of ¹³C NMR spectra of the samples in DMSO-d6 resulted in sample clustering due to sucrose content. CONCLUSION: Herbhoneys have similar antioxidant properties to traditional honeys, being therefore of equal nutritional value. There was a noticeable influence of the extract concentration on the observed antioxidant effect. For samples with high antioxidant activity, polyphenols were responsible for the observed effect. Sample clustering due to sucrose content in the NMR-PCA study allowed effortless detection of adulteration.


Asunto(s)
Antioxidantes/farmacología , Carotenoides/farmacología , Miel/análisis , Valor Nutritivo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Sacarosa/análisis , Animales , Abejas , Compuestos de Bifenilo/metabolismo , Carotenoides/análisis , Dieta , Humanos , Espectroscopía de Resonancia Magnética/métodos , Picratos/metabolismo , Polifenoles/análisis
17.
Sci Rep ; 14(1): 12825, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834643

RESUMEN

Cyclic tetrapeptides c(Pro-Phe-Pro-Phe) obtained by the mechanosynthetic method using a ball mill were isolated in a pure stereochemical form as a homochiral system (all L-amino acids, sample A) and as a heterochiral system with D configuration at one of the stereogenic centers of Phe (sample B). The structure and stereochemistry of both samples were determined by X-ray diffraction studies of single crystals. In DMSO and acetonitrile, sample A exists as an equimolar mixture of two conformers, while only one is monitored for sample B. The conformational space and energetic preferences for possible conformers were calculated using DFT methods. The distinctly different conformational flexibility of the two samples was experimentally proven by Variable Temperature (VT) and 2D EXSY NMR measurements. Both samples were docked to histone deacetylase HDAC8. Cytotoxic studies proved that none of the tested cyclic peptide is toxic.


Asunto(s)
Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Humanos , Cristalografía por Rayos X , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Simulación del Acoplamiento Molecular , Oligopéptidos/química , Oligopéptidos/farmacología , Estereoisomerismo , Solventes/química
18.
Pharmaceutics ; 15(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111719

RESUMEN

The applicability of different solvent-free approaches leading to the amorphization of active pharmaceutical ingredients (APIs) was tested. Ethenzamide (ET), an analgesic and anti-inflammatory drug, and two ethenzamide cocrystals with glutaric acid (GLU) and ethyl malonic acid (EMA) as coformers were used as pharmaceutical models. Calcinated and thermally untreated silica gel was applied as an amorphous reagent. Three methods were used to prepare the samples: manual physical mixing, melting, and grinding in a ball mill. The ET:GLU and ET:EMA cocrystals forming low-melting eutectic phases were selected as the best candidates for testing amorphization by thermal treatment. The progress and degree of amorphousness were determined using instrumental techniques: solid-state NMR spectroscopy, powder X-ray diffraction, and differential scanning calorimetry. In each case, the API amorphization was complete and the process was irreversible. A comparative analysis of the dissolution profiles showed that the dissolution kinetics for each sample are significantly different. The nature and mechanism of this distinction are discussed.

19.
RSC Adv ; 13(31): 21421-21431, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37465576

RESUMEN

Cancer is a global health problem being the second worldwide cause of deaths right after cardiovascular diseases. The main methods of cancer treatment involve surgery, radiation and chemotherapy with an emphasis on the latter. Thus development of nanochemistry and nanomedicine in a search for more effective and safer cancer treatment is an important area of current research. Below, we present interaction of doxorubicin and acriflavine and the cytotoxicity of these drug nano-complexes towards cervical cancer (HeLa) cells. Experimental results obtained from NMR measurements and fluorescence spectroscopy show that the drugs' interaction was due to van der Waals forces, formation of hydrogen bonds and π-π stacking. Quantum molecular simulations confirmed the experimental results with regard to existing π-π stacking. Additionally it was shown that, at the level of theory applied (DFT, triple zeta basis set), the stacking interactions comprise the most preferable interactions (the lowest ΔG ca. -12 kcal mol-1) both between the molecules forming the acriflavine system and between the other component - another drug (doxorubicin) dimer. Biological tests performed on HeLa cells showed high cytotoxicity of the complexes, comparable to free drugs (ACF and DOX), both after 24 and 48 hours of incubation. For non-cancerous cells, a statistically significant difference in the cytotoxicity of drugs and complexes was observed in the case of a short incubation period. The results of the uptake study showed significantly more efficient cellular uptake of acriflavine than doxorubicin, whether administered alone or in combination with an anthracycline. The mechanism determining the selective uptake of acriflavine and ACF : DOX complexes towards non-cancer and cancer cells should be better understood in the future, as it may be of key importance in the design of complexes with toxic anti-cancer drugs.

20.
Pharmaceutics ; 12(4)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326428

RESUMEN

Two, well defined binary crystals with 1-Hydroxy-4,5-Dimethyl-Imidazole 3-Oxide (HIMO) as coformer and thiobarbituric acid (TBA) as well barbituric acid (BA) as Active Pharmaceutical Ingredients (APIs) were obtained by cocrystallization (from methanol) or mechanochemically by grinding. The progress of cocrystal formation in a ball mill was monitored by means of high-resolution, solid state NMR spectroscopy. The 13C CP/MAS, 15N CP/MAS and 1H Very Fast (VF) MAS NMR procedures were employed to inspect the tautomeric forms of the APIs, structure elucidation of the coformer and the obtained cocrystals. Single crystal X-ray studies allowed us to define the molecular structure and crystal packing for the coformer as well as the TBA/HIMO and BA/HIMO cocrystals. The intermolecular hydrogen bonding, π-π interactions and CH-π contacts responsible for higher order organization of supramolecular structures were determined. Biological studies of HIMO and the obtained cocrystals suggest that these complexes are not cytotoxic and can potentially be considered as therapeutic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA