Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 6: 32298, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27585862

RESUMEN

DNA methylation is an epigenetic mechanism critical for tissue development and cell specification. Mammalian brains consist of many different types of cells with assumedly distinct DNA methylation profiles, and thus some genomic loci may demonstrate bipolar DNA methylation pattern, i.e. hypermethylated in one cell subset but hypomethylated in others. Currently, how extensive methylation patterns vary among brain cells is unknown and bipolar methylated genomic loci remain largely unexplored. In this study, we implemented a procedure to infer cell-subset specific methylated (CSM) loci from the methylomes of human and mouse frontal cortices at different developmental stages. With the genome-scale hairpin bisulfite sequencing approach, we demonstrated that the majority of CSM loci predicted likely resulted from the methylation differences among brain cells rather than from asymmetric DNA methylation between DNA double strands. Correlated with enhancer-associated histone modifications, putative CSM loci increased dramatically during early stages of brain development and were enriched for GWAS variants associated with neurological disorder-related diseases/traits. Altogether, this study provides a procedure to identify genomic regions showing methylation differences in a mixed cell population and our results suggest that a set of cis-regulatory elements are primed in early postnatal life whose functions may be compromised in human neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Genómica/métodos , Mamíferos/genética , Adolescente , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Histonas/metabolismo , Humanos , Mamíferos/embriología , Mamíferos/crecimiento & desarrollo , Metilación , Ratones
2.
PLoS One ; 11(7): e0159930, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467069

RESUMEN

Leptomeningeal anastomoses play a critical role in regulating vascular re-perfusion following obstruction, however, the mechanisms regulating their development remains under investingation. Our current findings indicate that EphA4 receptor is a novel negative regulator of collaterogenesis. We demonstrate that EphA4 is highly expressed on pial arteriole collaterals at post-natal day (P) 1 and 7, then significantly reduced by P21. Endothelial cell (EC)-specific loss of EphA4, EphA4f/f/Tie2::Cre (KO), resulted in an increase in the density but not diameter of pial collaterals compared to WT mice. ECs isolated from KO mice displayed a 3-fold increase in proliferation, enhanced migration, tube formation and elevated levels of phospho(p)-Akt compared to WT ECs. Attenuating p-Akt, using LY294002, reduced the proliferative and migration effects in the KO ECs. RNAseq analysis also revealed altered expression patterns for genes that regulate cell proliferation, vascular development, extracellular matrix and immune-mediate responses, namely MCP-1, MMP2 and angiopoietin-1. Lastly, we show that induction of hindlimb ischemia resulted in accelerated re-perfusion, collateral remodeling and reduced tissue necrosis in the absence of EC-specific EphA4 compared to WT mice. These findings demonstrate a novel role for EphA4 in the early development of the pial collateral network and suggests a role in regulating vascular remodeling after obstruction.


Asunto(s)
Venas Cerebrales/fisiopatología , Endotelio Vascular/fisiopatología , Miembro Posterior/irrigación sanguínea , Isquemia/fisiopatología , Receptor EphA4/fisiología , Animales , Cromonas , Endotelio Vascular/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas , Perfusión , Receptor EphA4/genética
3.
Adv Bioinformatics ; 2015: 760423, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26798339

RESUMEN

The emerging genome-wide hairpin bisulfite sequencing (hairpin-BS-Seq) technique enables the determination of the methylation pattern for DNA double strands simultaneously. Compared with traditional bisulfite sequencing (BS-Seq) techniques, hairpin-BS-Seq can determine methylation fidelity and increase mapping efficiency. However, no computational tool has been designed for the analysis of hairpin-BS-Seq data yet. Here we present HBS-tools, a set of command line based tools for the preprocessing, mapping, methylation calling, and summarizing of genome-wide hairpin-BS-Seq data. It accepts paired-end hairpin-BS-Seq reads to recover the original (pre-bisulfite-converted) sequences using global alignment and then calls the methylation statuses for cytosines on both DNA strands after mapping the original sequences to the reference genome. After applying to hairpin-BS-Seq datasets, we found that HBS-tools have a reduced mapping time and improved mapping efficiency compared with state-of-the-art mapping tools. The HBS-tools source scripts, along with user guide and testing data, are freely available for download.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA