Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Inorg Chem ; 61(5): 2391-2401, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35073063

RESUMEN

Metal-ligand cooperativity (MLC), a phenomenon that leverages reactive ligands to promote synergistic reactions with metals, has proven to be a powerful approach to achieving new and unprecedented chemical transformations with metal complexes. While many examples of MLC are known with a wide range of substrates, experimentally quantifying how ligand modifications affect MLC binding strength remains a challenge. Here we describe how cyclic voltammetry (CV) was used to quantify differences in MLC binding strength in a series of square-pyramidal Ru complexes. This method relies on using multifunctional ligands (those capable of both MLC and ligand-centered redox activity) as electrochemical reporters of MLC binding strength. The synthesis and characterization of Ru complexes with three different redox-active tetradentate ligands and two different ancillary phosphines (PPh3 and PCy3) are described. Titration CV studies conducted using BH3·THF with BH3 as a model MLC substrate allowed ΔGMLC to be quantified for each complex. Compared to our base triaryl ligand, increasing π conjugation in the backbone of the redox-active ligand enhanced MLC binding, whereas increasing π conjugation in the flanking groups decreased the MLC binding strength. Structures and spectroscopic data collected for the isolated MLC complexes are also described along with supporting DFT calculations that were used to illuminate electronic factors that likely account for the observed differences in the MLC binding strength. These results demonstrate how redox-active ligands and CV can be used to quantify subtle differences in the MLC binding strength across a series of structurally related complexes with different ligand modifications.

2.
Inorg Chem ; 59(15): 10845-10853, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32639726

RESUMEN

Metal-ligand cooperativity (MLC) relies on chemically reactive ligands to assist metals with small-molecule binding and activation, and it has facilitated unprecedented examples of catalysis with metal complexes. Despite growing interest in combining ligand-centered chemical and redox reactions for chemical transformations, there are few studies demonstrating how chemically engaging redox active ligands in MLC affects their electrochemical properties when bound to metals. Here we report stepwise changes in the redox activity of model Ru complexes as zero, one, and two BH3 molecules undergo MLC binding with a triaryl noninnocent N2S2 ligand derived from o-phenylenediamine (L1). A similar series of Ru complexes with a diaryl N2S2 ligand with ethylene substituted in place of phenylene (L2) is also described to evaluate the influence of the o-phenylenediamine subunit on redox activity and MLC. Cyclic voltammetry (CV) studies and density functional theory (DFT) calculations show that MLC attenuates ligand-centered redox activity in both series of complexes, but electron transfer is still achieved when only one of the two redox-active sites on the ligands is chemically engaged. The results demonstrate how incorporating more than one multifunctional reactive site could be an effective strategy for maintaining redox noninnocence in ligands that are also chemically reactive and competent for MLC.

3.
J Am Chem Soc ; 141(43): 17404-17413, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31589441

RESUMEN

Ruthenium-pincer complexes bearing CNN- and PNN-pincer ligands with diethyl- or diisopropylamino side groups, which have previously been reported to be active precatalysts for ester hydrogenation, undergo dehydroalkylation on heating in the presence of tricyclohexylphosphine to release ethane or propane, giving five-coordinate ruthenium(0) complexes containing a nascent imine functional group. Ethane or propane is also released under the conditions of catalytic ester hydrogenation, and time-course studies show that this release is concomitant with the onset of catalysis. A new PNN-pincer ruthenium(0)-imine complex is a highly active catalyst for ester hydrogenation at room temperature, giving up to 15 500 turnovers with no added base. This complex was shown to react reversibly at room temperature with two equivalents of hydrogen to give a ruthenium(II)-dihydride complex, where the imine functionality has been hydrogenated to give a protic amine side group. These observations have potentially broad implications for the identities of catalytic intermediates in ester hydrogenation and related transformations.

4.
Angew Chem Int Ed Engl ; 58(21): 6993-6998, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30901511

RESUMEN

Constraining σ3 -P compounds in nontrigonal, entatic geometries has proven to be an effective strategy for promoting biphilic oxidative addition reactions more typical of transition metals. Although qualitative descriptions of the impact of structure and symmetry on σ3 -P complexes have been proposed, electronic structure variations responsible for biphilic reactivity have yet to be elucidated experimentally. Reported here are P K-edge XANES data and complementary TDDFT calculations for a series of structurally modified P(N)3 complexes that both validate and quantify electronic structure variations proposed to give rise to biphilic reactions at phosphorus. These data are presented alongside experimentally referenced electronic structure calculations that reveal nontrigonal structures predicted to further enhance biphilic reactivity in σ3 -P ligands and catalysts.


Asunto(s)
Compuestos Organofosforados/química , Fósforo/química , Elementos de Transición/química , Catálisis , Ligandos , Modelos Moleculares , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
5.
J Am Chem Soc ; 140(51): 17977-17984, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30540455

RESUMEN

Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.

6.
J Synchrotron Radiat ; 25(Pt 2): 529-536, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488933

RESUMEN

P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs2CuCl4) and S (Na2S2O3·5H2O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh4Br as a potential alternative. The P K-edge XANES region of commercially available PPh4Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh4Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh3 and PPh4+ revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh4Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh4Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

7.
Inorg Chem ; 57(16): 10277-10286, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30067355

RESUMEN

Diphosphines are highly versatile ancillary ligands in coordination chemistry and catalysis because their structures and donor-acceptor properties can vary widely depending on the substituents attached to phosphorus. Experimental and theoretical methods have been developed to quantify differences in phosphine and diphosphine ligand field strength, but experimentally measuring individual σ-donor and π-acceptor contributions to metal-phosphorus bonding remains a formidable challenge. Here we report P and Cl K-edge X-ray absorption spectroscopy (XAS), density functional theory (DFT), and time-dependent density functional theory (TDDFT) studies of a series of [Ph2P(CH2) nPPh2]TiCl4 complexes, where n = 1, 2, or 3. The d0 metal complexes (Ti4+) revealed both P 1s → Ti-P π and P 1s → Ti-P σ* transitions in the P K-edge XAS spectra, which allowed spectral changes associated with Ti-P σ-bonding and π-backbonding to be evaluated as a function of diphosphine alkane length. DFT and TDDFT calculations were used to assign and quantify changes in Ti-P σ-bonding and π-backbonding. The calculated results for [Ph2P(CH2)2PPh2]TiCl4 were subsequently compared to electronic structure calculations and simulated spectra for [R2P(CH2)2PR2]TiCl4, where R = cyclohexyl or CF3, to evaluate spectral changes as a function of diphosphine ligand field strength. Collectively, our results demonstrate how P K-edge XAS can be used to experimentally measure M-P π-backbonding with a d0 metal and corroborate earlier studies showing that relative changes in covalent M-P σ bonding do not depend solely on changes in diphosphine bite angle.

8.
J Am Chem Soc ; 139(49): 18052-18064, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29182343

RESUMEN

Understanding the nature of covalent (band-like) vs ionic (atomic-like) electrons in metal oxides continues to be at the forefront of research in the physical sciences. In particular, the development of a coherent and quantitative model of bonding and electronic structure for the lanthanide dioxides, LnO2 (Ln = Ce, Pr, and Tb), has remained a considerable challenge for both experiment and theory. Herein, relative changes in mixing between the O 2p orbitals and the Ln 4f and 5d orbitals in LnO2 are evaluated quantitatively using O K-edge X-ray absorption spectroscopy (XAS) obtained with a scanning transmission X-ray microscope and density functional theory (DFT) calculations. For each LnO2, the results reveal significant amounts of Ln 5d and O 2p mixing in the orbitals of t2g (σ-bonding) and eg (π-bonding) symmetry. The remarkable agreement between experiment and theory also shows that significant mixing with the O 2p orbitals occurs in a band derived from the 4f orbitals of a2u symmetry (σ-bonding) for each compound. However, a large increase in orbital mixing is observed for PrO2 that is ascribed to a unique interaction derived from the 4f orbitals of t1u symmetry (σ- and π-bonding). O K-edge XAS and DFT results are compared with complementary L3-edge and M5,4-edge XAS measurements and configuration interaction calculations, which shows that each spectroscopic approach provides evidence for ground state O 2p and Ln 4f orbital mixing despite inducing very different core-hole potentials in the final state.

9.
J Am Chem Soc ; 137(7): 2506-23, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25689484

RESUMEN

Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).

10.
Inorg Chem ; 54(12): 5646-59, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25996554

RESUMEN

Despite the long-standing use of phosphine and diphosphine ligands in coordination chemistry and catalysis, questions remain as to their effects on metal-ligand bonding in transition metal complexes. Here we report ligand K-edge XAS, DFT, and TDDFT studies aimed at quantifying the impact of coordination geometry, diphosphine bite angle, and phosphine trans influence on covalency in M-P and M-Cl bonds. A series of four-coordinate NiCl2 and PdCl2 complexes containing PPh3 or Ph2P(CH2)nPPh2, where n = 1 (dppm), 2 (dppe), 3 (dppp), and 4 (dppb), was analyzed. The XAS data revealed that changing the coordination geometry from tetrahedral in Ni(PPh3)2Cl2 (1) to square planar in Ni(dppe)Cl2 (2) more than doubles the intensity of pre-edge features assigned to Ni-P and Ni-Cl 1s → σ* transitions. By way of comparison, varying the diphosphine in Pd(dppm)Cl2 (4), Pd(dppp)Cl2 (6), and Pd(dppb)Cl2 (7) yielded Pd-P 1s → σ* transitions with identical intensities, but a 10% increase was observed in the P K-edge XAS spectrum of Pd(dppe)Cl2 (5). A similar observation was made when comparing Ni(dppe)Cl2 (2) to Ni(dppp)Cl2 (3), and DFT and TDDFT calculations corroborated XAS results obtained for both series. Comparison of the spectroscopic and theoretical results to the diphosphine structures revealed that changes in M-P covalency were not correlated to changes in bite angles or coordination geometry. As a final measure, P and Cl K-edge XAS data were collected on trans-Pd(PPh3)2Cl2 (8) for comparison to the cis diphosphine complex Pd(dppe)Cl2 (5). Consistent with phosphine's stronger trans influence compared to chloride, a 35% decrease in the intensity of the Pd-P 1s → σ* pre-edge feature and a complementary 34% increase in Pd-Cl 1s → σ* feature was observed for 8 (trans) compared to 5 (cis). Overall, the results reveal how coordination geometry, ligand arrangement, and diphosphine structure affect covalent metal-phosphorus and metal-chloride bonding in these late transition metal complexes.

11.
Inorg Chem ; 53(11): 5429-37, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24833117

RESUMEN

The chemical oxidation and subsequent group transfer activity of the unusual diiron imido complexes Fe((i)PrNPPh2)3Fe≡NR (R = tert-butyl ((t)Bu), 1; adamantyl, 2) was examined. Bulk chemical oxidation of 1 and 2 with Fc[PF6] (Fc = ferrocene) is accompanied by fluoride ion abstraction from PF6(-) by the iron center trans to the Fe≡NR functionality, forming F-Fe((i)PrNPPh2)3Fe≡NR ((i)Pr = isopropyl) (R = (t)Bu, 3; adamantyl, 4). Axial halide ligation in 3 and 4 significantly disrupts the Fe-Fe interaction in these complexes, as is evident by the >0.3 Å increase in the intermetallic distance in 3 and 4 compared to 1 and 2. Mössbauer spectroscopy suggests that each of the two pseudotetrahedral iron centers in 3 and 4 is best described as Fe(III) and that one-electron oxidation has occurred at the tris(amido)-ligated iron center. The absence of electron delocalization across the Fe-Fe≡NR chain in 3 and 4 allows these complexes to readily react with CO and (t)BuNC to generate the Fe(III)Fe(I) complexes F-Fe((i)PrNPPh2)3Fe(CO)2 (5) and F-Fe((i)PrNPPh2)3Fe((t)BuNC)2 (6), respectively. Computational methods are utilized to better understand the electronic structure and reactivity of oxidized complexes 3 and 4.


Asunto(s)
Compuestos Férricos/química , Modelos Moleculares , Estructura Molecular , Fijación del Nitrógeno , Oxidación-Reducción
12.
J Am Chem Soc ; 135(32): 11780-3, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23906040

RESUMEN

The first silylyne complex of a metal beyond group 6, [Cp*((i)Pr3P)(H)Os≡Si(Trip)][HB(C6F5)3], was prepared by a new synthetic route involving hydride abstraction from silicon. NMR and DFT computations support the presence of a silylyne ligand, and NBO and ETS-NOCV analysis revealed the nature of this Os-Si interaction as a triple bond consisting of a covalent σ bond and two strong π back-donations. The discovery of this complex allowed observations of the first cycloadditions involving a silylyne complex, and terminal alkynes are shown to react via C-H bond additions across the Os≡Si bond.

13.
J Am Chem Soc ; 135(39): 14731-40, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24047199

RESUMEN

Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.

14.
J Am Chem Soc ; 135(5): 1864-71, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23351138

RESUMEN

Advancing theories of how metal-oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal MO(4)(x-) anions have formed the basis for new M-O bonding theories. Herein, relative changes in M-O orbital mixing in MO(4)(2-) (M = Cr, Mo, W) and MO(4)(-) (M = Mn, Tc, Re) are evaluated for the first time by nonresonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and time-dependent density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M-O e* (π*) mixing; for example, it more than doubles in ReO(4)(-) relative to CrO(4)(2-). Mixing in the t(2)* orbitals (σ* + π*) remains relatively constant within the same Group, but increases on moving from Group 6 to Group 7. These unexpected changes in orbital energy and composition for formally isoelectronic tetraoxometalates are evaluated in terms of periodic trends in d orbital energy and radial extension.


Asunto(s)
Electrones , Metales Pesados/química , Oxígeno/química , Teoría Cuántica , Microscopía Electrónica de Transmisión de Rastreo , Estructura Molecular , Espectroscopía de Absorción de Rayos X , Rayos X
15.
Organometallics ; 42(5): 347-356, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36937786

RESUMEN

The homogeneous catalysis of epoxide hydrogenolysis to give alcohols has recently received significant attention. Catalyst systems have been developed for the selective formation of either the Markovnikov (branched) or anti-Markovnikov (linear) alcohol product. Thus far, the reported catalysts exhibiting Markovnikov selectivity all feature the potential for Noyori/Shvo-type bifunctional catalysis, with either a RuH/NH or FeH/OH core structure. The proposed mechanisms of epoxide ring-opening have involved cooperative C-O bond hydrogenolysis involving the metal hydride and the acidic pendant group on the ligand, in analogy to the well-documented mechanism of polar double-bond hydrogenation exhibited by catalysts of this type. In this work, we present a combined computational/experimental study of the mechanism of epoxide hydrogenolysis catalyzed by Noyori-type PNP and PNN complexes of ruthenium. We find that, at least for these ruthenium systems, the previously proposed bifunctional pathway for epoxide ring-opening is energetically inaccessible; instead, the ring-opening proceeds through opposite-side nucleophilic attack of the ruthenium hydride on the epoxide carbon, without the involvement of the ligand N-H group. For both catalyst systems, the rate law and overall barrier predicted by density functional theory (DFT) are consistent with the results from kinetic studies.

16.
J Am Chem Soc ; 134(35): 14408-22, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22920323

RESUMEN

The dithiophosphinic acid HS(2)P(o-CF(3)C(6)H(4))(2) is known to exhibit exceptionally high extraction selectivities for trivalent minor actinides (Am and Cm) in the presence of trivalent lanthanides. To generate insight that may account for this observation, a series of [PPh(4)][S(2)PR(2)] complexes, where R = Me (1), Ph (2), p-CF(3)C(6)H(4) (3), m-CF(3)C(6)H(4) (4), o-CF(3)C(6)H(4) (5), o-MeC(6)H(4) (6), and o-MeOC(6)H(4) (7), have been investigated using sulfur K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT). The experimental analyses show distinct features in the spectrum of S(2)P(o-CF(3)C(6)H(4))(2)(-) (5) that are not present in the spectrum of 4, whose conjugate acid exhibits reduced selectivity, or in the spectra of 2 and 3, which are anticipated to have even lower separation factors based on previous studies. In contrast, the spectrum of 5 is similar to those of 6 and 7, despite the significantly different electron-donating properties associated with the o-CF(3), o-Me, and o-OMe substituents. The TDDFT calculations suggest that the distinct spectral features of 5-7 result from steric interactions due to the presence of the ortho substituents, which force the aryl groups to rotate around the P-C bonds and reduce the molecular symmetry from approximately C(2v) in 2-4 to C(2) in 5-7. As a consequence, the change in aryl group orientation appears to make the ortho-substituted S(2)PR(2)(-) anions "softer" extractants compared with analogous Ph-, p-CF(3)C(6)H(4)-, and m-CF(3)C(6)H(4)-containing ligands (2-4) by raising the energies of the sulfur valence orbitals and enhancing orbital mixing between the S(2)P molecular orbitals and the aryl groups bound to phosphorus. Overall, we report that sulfur K-edge XAS experiments and TDDFT calculations reveal unique electronic properties of the S(2)P(o-CF(3)C(6)H(4))(2)(-) anion in 5. These results correlate with the special extraction properties associated with HS(2)P(o-CF(3)C(6)H(4))(2), and suggest that ligand K-edge XAS and TDDFT can be used to guide separation efforts relevant to advanced fuel cycle development.

17.
J Am Chem Soc ; 134(12): 5586-97, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22404133

RESUMEN

Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.

18.
Inorg Chem ; 51(1): 13-5, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22168432

RESUMEN

A detailed thermodynamic examination of the selective extraction of Am(3+) from Eu(3+) by two dithiophosphinic acids was performed using DFT. By examination of two extractants with two metal ions, the most uncertain terms of these calculations were eliminated, resulting in free energies (ΔΔΔG(ext)) that are directly related to the selectivity data. The calculated relative selectivities agree well with experimental data, indicating that the extraction factor is primarily due to the binding free energy of the ligands to the metals and is not dependent on side reactions or complicated solvent effects.

19.
Inorg Chem ; 51(17): 9499-507, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22880842

RESUMEN

A detailed density functional study was performed to examine the reaction of mixed-valence dirhodium and diiridium species [M(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)(Cl)(2) (1, tfepma = MeN[P(OCH(2)CF(3))(2)](2), CN(t)Bu = tert-butyl isocyaninde)] with HCl and oxygen with an interest in examining the pathways for oxygen insertion into the intermediate metal hydride to form hydroperoxo species. The O(2) hydrogen atom abstraction mechanism for both the Rh and Ir was found to be feasible. This is the first time this mechanism has been applied to a Rh system and only the second time it has been examined for a system other than Pd. The competing trans HCl reductive elimination pathway was also examined and found to be greatly dependent on the stereochemistry of the starting hydride primarily due to the intermediate formed upon the loss of Cl(-). As a result, the reductive elimination pathway was more favorable by 11.5 kcal/mol for the experimentally observed Ir stereoisomer, while the two pathways were isoenergetic for the other stereoisomer of the Rh complex. All findings are consistent with the kinetics study previously performed.

20.
Inorg Chem ; 51(14): 7551-60, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22746670

RESUMEN

A method to evaluate the electronic structure of minor actinide extractants is described. A series of compounds containing effective and ineffective actinide extractants (dithiophosphinates, S(2)PR(2)(-)) bound to a common transition metal ion (Ni(2+)) was analyzed by structural, spectroscopic, and theoretical methods. By using a single transition metal that provides structurally similar compounds, the metal contributions to bonding are essentially held constant so that subtle electronic variations associated with the extracting ligand can be probed using UV-vis spectroscopy. By comparison, it is difficult to obtain similar information using analogous techniques with minor actinide and lanthanide complexes. Here, we demonstrate that this approach, supplemented with ground state and time-dependent density functional theory, provides insight for understanding why high separation factors are reported for the extractant HS(2)P(o-CF(3)C(6)H(4))(2), while lower values are reported and anticipated for other HS(2)PR(2) derivatives (R = C(6)H(5), p-CF(3)C(6)H(4), m-CF(3)C(6)H(4)). The implications of these results for correlating electronic structure with the selectivity of HS(2)PR(2) extractants are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA