Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(9): e1010741, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070309

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.


Asunto(s)
COVID-19 , Animales , COVID-19/complicaciones , Cricetinae , Hurones , Humanos , Mesocricetus , Ratones , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
2.
J Cell Biochem ; 124(5): 701-715, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946432

RESUMEN

Mpox (formerly Monkeypox), a zoonotic illness caused by the Mpox virus, belongs to the Orthopoxvirus genus in the family Poxviridae. To design and develop effective antiviral therapeutics against DNA viruses, the DNA-dependent RNA polymerase (DdRp) of poxviruses has emerged as a promising drug target. In the present study, we modeled the three-dimensional (3D) structure of DdRp using a template-based homology approach. After modeling, virtual screening was performed to probe the molecular interactions between 1755 Food and Drug Administration-approved small molecule drugs (≤500 molecular weight) and the DdRp of Mpox. Based on the binding affinity and molecular interaction patterns, five drugs, lumacaftor (-11.7 kcal/mol), conivaptan (-11.7 kcal/mol), betulinic acid (-11.6 kcal/mol), fluspirilene (-11.3 kcal/mol), and imatinib (-11.2 kcal/mol), have been ranked as the top drug compounds interacting with Mpox DdRp. Complexes of these shortlisted drugs with DdRp were further evaluated using state-of-the-art all-atoms molecular dynamics (MD) simulations on 200 nanoseconds followed by principal component analysis (PCA). MD simulations and PCA results revealed highly stable interactions of these small drugs with DdRp. After due validation in wet-lab using available in vitro and in vivo experiments, these repurposed drugs can be further utilized for the treatment of contagious Mpox virus. The outcome of this study may establish a solid foundation to screen repurposed and natural compounds as potential antiviral therapeutics against different highly pathogenic viruses.


Asunto(s)
Reposicionamiento de Medicamentos , Mpox , Humanos , ARN Polimerasas Dirigidas por ADN , Simulación de Dinámica Molecular , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular
3.
Am J Physiol Heart Circ Physiol ; 325(5): H1153-H1167, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737732

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection damages the heart, increasing the risk of adverse cardiovascular events. Female sex protects against complications of infection; females are less likely to experience severe illness or death, although their risk for postacute sequelae of COVID-19 ("long COVID") is higher than in males. Despite the important role of the heart in COVID-19 outcomes, molecular elements in the heart impacted by SARS-CoV-2 are poorly understood. Similarly, the role sex has on the myocardial effects of SARS-CoV-2 infection has not been investigated at a molecular level. We intranasally inoculated female and male ferrets with SARS-CoV-2 and assessed myocardial stress signals, inflammation, and the innate immune response for 14 days. Myocardial phosphorylated GSK3α/ß decreased at day 2 postinfection (pi) in male ferrets, whereas females showed no changes. Myocardial levels of p62/SQSTM1 decreased in male ferrets at days 2, 7, and 14 pi while lower baseline levels in females increased on day 2. Phosphorylated ERK1/2 increased in cardiomyocyte nuclei in females on days 2 and 14 pi, whereas male ferrets had no changes. Only hearts from females increased fibrosis on day 14 pi. Immune and inflammation markers increased in hearts, with some sex differences. These results are the first to identify myocardial stress responses following SARS-CoV-2 infection and reveal sex differences that may contribute to differential outcomes. Future research is required to define the pathways involving these stress signals to fully understand the myocardial effects of COVID-19 and identify targets that mitigate cardiac injury following SARS-CoV-2 infection.NEW & NOTEWORTHY Cardiovascular disease is a leading risk factor for severe COVID-19, and cardiovascular pathologies are among the most common adverse outcomes following SARS-CoV-2 infection. Females and males have different outcomes and adverse cardiovascular events following SARS-CoV-2 infection. This study shows sex differences in stress proteins p62/SQSTM1, ERK1/2, and GSK3α/ß, along with innate immunity and inflammation in hearts of ferrets infected with SARS-CoV-2, identifying mechanisms of COVID-19 cardiac injury and cardiac complications of long COVID.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Femenino , Masculino , Animales , Humanos , SARS-CoV-2 , Hurones , Síndrome Post Agudo de COVID-19 , Caracteres Sexuales , Proteína Sequestosoma-1 , Inflamación
4.
Proc Natl Acad Sci U S A ; 117(43): 26926-26935, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046650

RESUMEN

Influenza virus infections cause a wide variety of outcomes, from mild disease to 3 to 5 million cases of severe illness and ∼290,000 to 645,000 deaths annually worldwide. The molecular mechanisms underlying these disparate outcomes are currently unknown. Glycosylation within the human host plays a critical role in influenza virus biology. However, the impact these modifications have on the severity of influenza disease has not been examined. Herein, we profile the glycomic host responses to influenza virus infection as a function of disease severity using a ferret model and our lectin microarray technology. We identify the glycan epitope high mannose as a marker of influenza virus-induced pathogenesis and severity of disease outcome. Induction of high mannose is dependent upon the unfolded protein response (UPR) pathway, a pathway previously shown to associate with lung damage and severity of influenza virus infection. Also, the mannan-binding lectin (MBL2), an innate immune lectin that negatively impacts influenza outcomes, recognizes influenza virus-infected cells in a high mannose-dependent manner. Together, our data argue that the high mannose motif is an infection-associated molecular pattern on host cells that may guide immune responses leading to the concomitant damage associated with severity.


Asunto(s)
Glicoproteínas/metabolismo , Interacciones Huésped-Patógeno , Gripe Humana/metabolismo , Pulmón/metabolismo , Manosa/metabolismo , Células A549 , Animales , Metabolismo de los Hidratos de Carbono , Femenino , Hurones , Glicómica , Glicosilación , Humanos , Subtipo H1N1 del Virus de la Influenza A , Lectina de Unión a Manosa/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo
5.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321802

RESUMEN

Influenza A virus (IAV) increases the presentation of class I human leukocyte antigen (HLA) proteins that limit antiviral responses mediated by natural killer (NK) cells, but molecular mechanisms for these processes have not yet been fully elucidated. We observed that infection with A/Fort Monmouth/1/1947(H1N1) IAV significantly increased the presentation of HLA-B, -C, and -E on lung epithelial cells. Virus entry was not sufficient to induce HLA upregulation because UV-inactivated virus had no effect. Aberrant internally deleted viral RNAs (vRNAs) known as mini viral RNAs (mvRNAs) and defective interfering RNAs (DI RNAs) expressed from an IAV minireplicon were sufficient for inducing HLA upregulation. These defective RNAs bind to retinoic acid-inducible gene I (RIG-I) and initiate mitochondrial antiviral signaling (MAVS) protein-dependent antiviral interferon (IFN) responses. Indeed, MAVS was required for HLA upregulation in response to IAV infection or ectopic mvRNA/DI RNA expression. The effect was partially due to paracrine signaling, as we observed that IAV infection or mvRNA/DI RNA-expression stimulated production of IFN-ß and IFN-λ1 and conditioned media from these cells elicited a modest increase in HLA surface levels in naive epithelial cells. HLA upregulation in response to aberrant viral RNAs could be prevented by the Janus kinase (JAK) inhibitor ruxolitinib. While HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein; we determined that NS1 limits cell-intrinsic and paracrine mechanisms of HLA upregulation. Taken together, our findings indicate that aberrant IAV RNAs stimulate HLA presentation, which may aid viral evasion of innate immunity.IMPORTANCE Human leukocyte antigens (HLAs) are cell surface proteins that regulate innate and adaptive immune responses to viral infection by engaging with receptors on immune cells. Many viruses have evolved ways to evade host immune responses by modulating HLA expression and/or processing. Here, we provide evidence that aberrant RNA products of influenza virus genome replication can trigger retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS)-dependent remodeling of the cell surface, increasing surface presentation of HLA proteins known to inhibit the activation of an immune cell known as a natural killer (NK) cell. While this HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein, which limits RIG-I activation and interferon production by the infected cell.


Asunto(s)
Genes MHC Clase I/genética , Antígenos HLA/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteína 58 DEAD Box/genética , Bases de Datos Genéticas , Células Epiteliales/virología , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata , Virus de la Influenza A/genética , Gripe Humana/genética , Células Asesinas Naturales/metabolismo , Pulmón/virología , ARN Viral/genética , Transducción de Señal , Activación Transcripcional , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
6.
Eur J Clin Invest ; 51(6): e13501, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33512013

RESUMEN

BACKGROUND: The presence of SARS-CoV-2 RNA in plasma has been linked to disease severity and mortality. We compared RT-qPCR to droplet digital PCR (ddPCR) to detect SARS-CoV-2 RNA in plasma from COVID-19 patients (mild, moderate, and critical disease). METHODS: The presence/concentration of SARS-CoV-2 RNA in plasma was compared in three groups of COVID-19 patients (30 outpatients, 30 ward patients and 30 ICU patients) using both RT-qPCR and ddPCR. Plasma was obtained in the first 24h following admission, and RNA was extracted using eMAG. ddPCR was performed using Bio-Rad SARS-CoV-2 detection kit, and RT-qPCR was performed using GeneFinder™ COVID-19 Plus RealAmp Kit. Statistical analysis was performed using Statistical Package for the Social Science. RESULTS: SARS-CoV-2 RNA was detected, using ddPCR and RT-qPCR, in 91% and 87% of ICU patients, 27% and 23% of ward patients and 3% and 3% of outpatients. The concordance of the results obtained by both methods was excellent (Cohen's kappa index = 0.953). RT-qPCR was able to detect 34/36 (94.4%) patients positive for viral RNA in plasma by ddPCR. Viral RNA load was higher in ICU patients compared with the other groups (P < .001), by both ddPCR and RT-qPCR. AUC analysis revealed Ct values (RT-qPCR) and viral RNA load values (ddPCR) can similarly differentiate between patients admitted to wards and to the ICU (AUC of 0.90 and 0.89, respectively). CONCLUSION: Both methods yielded similar prevalence of RNAemia between groups, with ICU patients showing the highest (>85%). RT-qPCR was as useful as ddPCR to detect and quantify SARS-CoV-2 RNAemia in plasma.


Asunto(s)
COVID-19/sangre , ARN Viral/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Anciano , Atención Ambulatoria , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Habitaciones de Pacientes , Reacción en Cadena de la Polimerasa/métodos , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad
7.
Am J Pathol ; 189(12): 2389-2399, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31585069

RESUMEN

Influenza virus infection causes a spectrum of diseases, ranging from mild upper respiratory tract infection to severe lower respiratory tract infection, that can lead to diffuse alveolar damage, interstitial and airspace inflammation, or acute respiratory failure. Mechanisms instructing disease severity are not completely understood, but host, viral, and bacterial factors influence disease outcome. With age being one host factor associated with a higher risk of severe influenza, we investigated regional pulmonary distribution and severity of pneumonia after 2009 H1N1 influenza virus infection in newly weaned, adult, and aged ferrets to better understand age-dependent susceptibility and pathology. Aged ferrets exhibited greater weight loss and higher rates of mortality than adult ferrets, whereas most newly weaned ferrets did not lose weight but had a lack of weight gain. Newly weaned ferrets exhibited minimal pneumonia, whereas adult and aged ferrets had a spectrum of pneumonia severity. Influenza virus-induced pneumonia peaked earliest in adult ferrets, whereas aged ferrets had delayed presentation. Bronchial severity differed among groups, but bronchial pathology was comparable among all cohorts. Alveolar infection was strikingly different among groups. Newly weaned ferrets had little alveolar cell infection. Adult and aged ferrets had alveolar infection, but aged ferrets were unable to clear infection. These different age-related pneumonia and infection patterns suggest therapeutic strategies to treat influenza should be tailored contingent on age.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Pulmón/patología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones del Sistema Respiratorio/veterinaria , Envejecimiento , Animales , Modelos Animales de Enfermedad , Femenino , Hurones , Masculino , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Índice de Severidad de la Enfermedad
8.
Crit Care ; 24(1): 691, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317616

RESUMEN

BACKGROUND: COVID-19 can course with respiratory and extrapulmonary disease. SARS-CoV-2 RNA is detected in respiratory samples but also in blood, stool and urine. Severe COVID-19 is characterized by a dysregulated host response to this virus. We studied whether viral RNAemia or viral RNA load in plasma is associated with severe COVID-19 and also to this dysregulated response. METHODS: A total of 250 patients with COVID-19 were recruited (50 outpatients, 100 hospitalized ward patients and 100 critically ill). Viral RNA detection and quantification in plasma was performed using droplet digital PCR, targeting the N1 and N2 regions of the SARS-CoV-2 nucleoprotein gene. The association between SARS-CoV-2 RNAemia and viral RNA load in plasma with severity was evaluated by multivariate logistic regression. Correlations between viral RNA load and biomarkers evidencing dysregulation of host response were evaluated by calculating the Spearman correlation coefficients. RESULTS: The frequency of viral RNAemia was higher in the critically ill patients (78%) compared to ward patients (27%) and outpatients (2%) (p < 0.001). Critical patients had higher viral RNA loads in plasma than non-critically ill patients, with non-survivors showing the highest values. When outpatients and ward patients were compared, viral RNAemia did not show significant associations in the multivariate analysis. In contrast, when ward patients were compared with ICU patients, both viral RNAemia and viral RNA load in plasma were associated with critical illness (OR [CI 95%], p): RNAemia (3.92 [1.183-12.968], 0.025), viral RNA load (N1) (1.962 [1.244-3.096], 0.004); viral RNA load (N2) (2.229 [1.382-3.595], 0.001). Viral RNA load in plasma correlated with higher levels of chemokines (CXCL10, CCL2), biomarkers indicative of a systemic inflammatory response (IL-6, CRP, ferritin), activation of NK cells (IL-15), endothelial dysfunction (VCAM-1, angiopoietin-2, ICAM-1), coagulation activation (D-Dimer and INR), tissue damage (LDH, GPT), neutrophil response (neutrophils counts, myeloperoxidase, GM-CSF) and immunodepression (PD-L1, IL-10, lymphopenia and monocytopenia). CONCLUSIONS: SARS-CoV-2 RNAemia and viral RNA load in plasma are associated with critical illness in COVID-19. Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.


Asunto(s)
COVID-19/complicaciones , ARN Viral/análisis , Carga Viral/inmunología , Adulto , Anciano , Biomarcadores/análisis , Biomarcadores/sangre , COVID-19/sangre , Distribución de Chi-Cuadrado , Enfermedad Crítica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Reacción en Cadena de la Polimerasa/métodos , ARN Viral/sangre , Estadísticas no Paramétricas
9.
PLoS Pathog ; 11(10): e1005173, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26448646

RESUMEN

Seasonal influenza viruses are typically restricted to the human upper respiratory tract whereas influenza viruses with greater pathogenic potential often also target extra-pulmonary organs. Infants, pregnant women, and breastfeeding mothers are highly susceptible to severe respiratory disease following influenza virus infection but the mechanisms of disease severity in the mother-infant dyad are poorly understood. Here we investigated 2009 H1N1 influenza virus infection and transmission in breastfeeding mothers and infants utilizing our developed infant-mother ferret influenza model. Infants acquired severe disease and mortality following infection. Transmission of the virus from infants to mother ferrets led to infection in the lungs and mother mortality. Live virus was also found in mammary gland tissue and expressed milk of the mothers which eventually led to milk cessation. Histopathology showed destruction of acini glandular architecture with the absence of milk. The virus was localized in mammary epithelial cells of positive glands. To understand the molecular mechanisms of mammary gland infection, we performed global transcript analysis which showed downregulation of milk production genes such as Prolactin and increased breast involution pathways indicated by a STAT5 to STAT3 signaling shift. Genes associated with cancer development were also significantly increased including JUN, FOS and M2 macrophage markers. Immune responses within the mammary gland were characterized by decreased lymphocyte-associated genes CD3e, IL2Ra, CD4 with IL1ß upregulation. Direct inoculation of H1N1 into the mammary gland led to infant respiratory infection and infant mortality suggesting the influenza virus was able to replicate in mammary tissue and transmission is possible through breastfeeding. In vitro infection studies with human breast cells showed susceptibility to H1N1 virus infection. Together, we have shown that the host-pathogen interactions of influenza virus infection in the mother-infant dyad initiate immunological and oncogenic signaling cascades within the mammary gland. These findings suggest the mammary gland may have a greater role in infection and immunity than previously thought.


Asunto(s)
Animales Lactantes/virología , Interacciones Huésped-Parásitos/fisiología , Glándulas Mamarias Animales/virología , Glándulas Mamarias Humanas/virología , Infecciones por Orthomyxoviridae/transmisión , Animales , Animales Recién Nacidos , Western Blotting , Línea Celular , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Inmunohistoquímica , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/virología , Lactancia , Glándulas Mamarias Animales/patología , Microscopía Confocal , Leche/virología , Madres , Análisis de Secuencia por Matrices de Oligonucleótidos , Infecciones por Orthomyxoviridae/patología , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
10.
Antimicrob Agents Chemother ; 59(12): 7255-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26369969

RESUMEN

The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes.


Asunto(s)
Antivirales/farmacología , Ciclopentanos/farmacología , Inhibidores Enzimáticos/farmacología , Guanidinas/farmacología , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Ácidos Carbocíclicos , Animales , Perros , Esquema de Medicación , Femenino , Humanos , Subtipo H7N9 del Virus de la Influenza A/enzimología , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Inyecciones Intramusculares , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Oseltamivir/farmacología , Análisis de Supervivencia , Resultado del Tratamiento , Carga Viral/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
11.
J Gen Virol ; 95(Pt 10): 2127-2139, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24989173

RESUMEN

Influenza B viruses have become increasingly more prominent during influenza seasons. Influenza B infection is typically considered a mild disease and receives less attention than influenza A, but has been causing 20 to 50 % of the total influenza incidence in several regions around the world. Although there is increasing evidence of mid to lower respiratory tract diseases such as bronchitis and pneumonia in influenza B patients, little is known about the pathogenesis of recent influenza B viruses. Here we investigated the clinical and pathological profiles of infection with strains representing the two current co-circulating B lineages (B/Yamagata and B/Victoria) in the ferret model. Specifically, we studied two B/Victoria (B/Brisbane/60/2008 and B/Bolivia/1526/2010) and two B/Yamagata (B/Florida/04/2006 and B/Wisconsin/01/2010) strain infections in ferrets and observed strain-specific but not lineage-specific pathogenicity. We found B/Brisbane/60/2008 caused the most severe clinical illness and B/Brisbane/60/2008 and the B/Yamagata strains instigated pathology in the middle to lower respiratory tract. Importantly, B/Brisbane/60/2008 established efficient lower respiratory tract infection with high viral burden. Our phylogenetic analyses demonstrate profound reassortment among recent influenza B viruses, which indicates the genetic make-up of B/Brisbane/60/2008 differs from the other strains. This may explain the pathogenicity difference post-infection in ferrets.


Asunto(s)
Virus de la Influenza B/fisiología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Animales , Modelos Animales de Enfermedad , Hurones , Humanos , Virus de la Influenza B/aislamiento & purificación , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología
13.
J Virol ; 87(4): 1957-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23236062

RESUMEN

Ferrets have become an indispensable tool in the understanding of influenza virus virulence and pathogenesis. Furthermore, ferrets are the preferred preclinical model for influenza vaccine and therapeutic testing. Here we characterized the influenza infectome during the different stages of the infectious process in ferrets with and without prior specific immunity to influenza. RNA from lung tissue and lymph nodes from infected and naïve animals was subjected to next-generation sequencing, followed by de novo data assembly and annotation of the resulting sequences; this process generated a library comprising 13,202 ferret mRNAs. Gene expression profiles during pandemic H1N1 (pdmH1N1) influenza virus infection were analyzed by digital gene expression and solid support microarrays. As expected during primary infection, innate immune responses were triggered in the lung tissue; meanwhile, in the lymphoid tissue, genes encoding antigen presentation and maturation of effector cells of adaptive immunity increased dramatically. After 5 days postinfection, the innate immune gene expression was replaced by the adaptive immune response, which correlates with viral clearance. Reinfection with homologous pandemic influenza virus resulted in a diminished innate immune response, early adaptive immune gene regulation, and a reduction in clinical severity. The fully annotated ferret infectome will be a critical aid to the understanding of the molecular events that regulate disease severity and host-influenza virus interactions among seasonal, pandemic, and highly pathogenic avian influenzas.


Asunto(s)
Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Transcriptoma , Animales , Modelos Animales de Enfermedad , Hurones , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/patología , Ganglios Linfáticos/virología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Factores de Tiempo
15.
J Infect Dev Ctries ; 18(4): 600-608, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38728644

RESUMEN

INTRODUCTION: Human Mpox (formerly monkeypox) infection is an emerging zoonotic disease caused by the Mpox virus (MPXV). We describe the complete genome annotation, phylogeny, and mutational profile of a novel, sustained Clade I Mpox outbreak in the city of Kamituga in Eastern Democratic Republic of the Congo (DRC). METHODOLOGY: A cross-sectional, observational, cohort study was performed among patients of all ages admitted to the Kamituga Hospital with Mpox infection symptoms between late September 2023 and late January 2024. DNA was isolated from Mpox swabbed lesions and sequenced followed by phylogenetic analysis, genome annotation, and mutational profiling. RESULTS: We describe an ongoing Clade I Mpox outbreak in the city of Kamituga, South Kivu Province, Democratic Republic of Congo. Whole-genome sequencing of the viral RNA samples revealed, on average, 201.5 snps, 28 insertions, 81 deletions, 2 indels, 312.5 total variants, 158.3 amino acid changes, 81.66 intergenic variants, 72.16 synonymous mutations, 106 missense variants, 41.16 frameshift variants, and 3.33 inframe deletions across six samples. By assigning mutations at the proteome level for Kamituga MPXV sequences, we observed that seven proteins, namely, C9L (OPG047), I4L (OPG080), L6R (OPG105), A17L (OPG143), A25R (OPG151), A28L (OPG153), and B21R (OPG210) have emerged as hot spot mutations based on the consensuses inframe deletions, frameshift variants, synonymous variants, and amino acids substitutions. Based on the outcome of the annotation, we found a deletion of the D14L (OPG032) gene in all six samples. Following phylogenetic analysis and whole genome assembly, we determined that this cluster of Mpox infections is genetically distinct from previously reported Clade I outbreaks, and thus propose that the Kamituga Mpox outbreak represents a novel subgroup (subgroup VI) of Clade I MPXV. CONCLUSIONS: Here we report the complete viral genome for the ongoing Clade I Mpox Kamituga outbreak for the first time. This outbreak presents a distinct mutational profile from previously sequenced Clade I MPXV oubtreaks, suggesting that this cluster of infections is a novel subgroup (we term this subgroup VI). These findings underscore the need for ongoing vigilance and continued sequencing of novel Mpox threats in endemic regions.


Asunto(s)
Genoma Viral , Monkeypox virus , Mpox , Filogenia , Secuenciación Completa del Genoma , Humanos , República Democrática del Congo/epidemiología , Estudios Transversales , Monkeypox virus/genética , Monkeypox virus/clasificación , Masculino , Mpox/virología , Mpox/epidemiología , Femenino , Adulto , Brotes de Enfermedades , Mutación , Adolescente , Adulto Joven , Niño , Preescolar , Persona de Mediana Edad , Estudios de Cohortes
16.
Sci Rep ; 14(1): 9854, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684819

RESUMEN

Post-acute sequelae of COVID-19 (PASC) or the continuation of COVID-19 (Coronavirus disease 2019) symptoms past 12 weeks may affect as many as 30% of people recovering from a SARS-CoV-2 (severe acute respiratory coronavirus 2) infection. The mechanisms regulating the development of PASC are currently not known; however, hypotheses include virus reservoirs, pre-existing conditions, microblood clots, immune dysregulation, as well as poor antibody responses. Importantly, virus neutralizing antibodies are essential for COVID-19 recovery and protection from reinfection but there is currently limited information on these immune regulators and associated cytokines in PASC patients. Understanding the key drivers of general and specific symptoms associated with Long COVID and the presence of virus neutralizing antibodies in PASC will aid in the development of therapeutics, diagnostics, and vaccines which currently do not exist. We designed a cross-sectional study to investigate systemic antibody and cytokine responses during COVID-19 recovery and PASC. In total, 195 participants were recruited in one of four groups: (1) Those who never had COVID-19 (No COVID); (2) Those in acute COVID-19 recovery (Acute Recovery) (4-12 weeks post infection); (3) Those who recovered from COVID-19 (Recovered) (+ 12 weeks from infection); and (4) those who had PASC (PASC) (+ 12 weeks from infection). Participants completed a questionnaire on health history, sex, gender, demographics, experiences with COVID-19 acute and COVID-19 recovery/continuing symptoms. Serum samples collected were evaluated for antibody binding to viral proteins, virus neutralizing antibody titers, and serum cytokine levels using Ella SimplePlex Immunoassay™ panels. We found participants with PASC reported more pre-existing conditions (e.g. such as hypertension, asthma, and obesity), and PASC symptoms (e.g. fatigue, brain fog, headaches, and shortness of breath) following COVID-19 than COVID-19 Recovered individuals. Importantly, we found PASC individuals to have significantly decreased levels of neutralizing antibodies toward both SARS-CoV-2 and the Omicron BA.1 variant. Sex analysis indicated that female PASC study participants had sustained antibody levels as well as levels of the inflammatory cytokines GM-CSF and ANG-2 over time following COVID-19. Our study reports people experiencing PASC had lower levels of virus neutralizing antibodies; however, the results are limited by the collection time post-COVID-19 and post-vaccination. Moreover, we found females experiencing PASC had sustained levels of GM-CSF and ANG-2. With lower levels of virus neutralizing antibodies, this data suggests that PASC individuals not only have had a suboptimal antibody response during acute SARS-CoV-2 infection but may also have increased susceptibility to subsequent infections which may exacerbate or prolong current PASC illnesses. We also provide evidence suggesting GM-CSF and ANG-2 to play a role in the sex-bias of PASC. Taken together, our findings maybe important for understanding immune molecular drivers of PASC and PASC subgroups.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Factor Estimulante de Colonias de Granulocitos y Macrófagos , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/sangre , COVID-19/virología , Femenino , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/sangre , Adulto , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Estudios Transversales , Síndrome Post Agudo de COVID-19 , Anciano , Factores Sexuales , Enzima Convertidora de Angiotensina 2/metabolismo
17.
Vaccine ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38769033

RESUMEN

The emergence and ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid vaccine development platforms that can be updated to counteract emerging variants of currently circulating and future emerging coronaviruses. Here we report the development of a "train model" subunit vaccine platform that contains a SARS-CoV-2 Wuhan S1 protein (the "engine") linked to a series of flexible receptor binding domains (RBDs; the "cars") derived from SARS-CoV-2 variants of concern (VOCs). We demonstrate that these linked subunit vaccines when combined with Sepivac SWE™, a squalene in water emulsion (SWE) adjuvant, are immunogenic in Syrian hamsters and subsequently provide protection from infection with SARS-CoV-2 VOCs Omicron (BA.1), Delta, and Beta. Importantly, the bivalent and trivalent vaccine candidates offered protection against some heterologous SARS-CoV-2 VOCs that were not included in the vaccine design, demonstrating the potential for broad protection against a range of different VOCs. Furthermore, these formulated vaccine candidates were stable at 2-8 °C for up to 13 months post-formulation, highlighting their utility in low-resource settings. Indeed, our vaccine platform will enable the development of safe and broadly protective vaccines against emerging betacoronaviruses that pose a significant health risk for humans and agricultural animals.

18.
J Virol ; 86(4): 2229-38, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22130540

RESUMEN

During the 2009 H1N1 influenza virus pandemic (pdmH1N1) outbreak, it was found that most individuals lacked antibodies against the new pdmH1N1 virus, and only the elderly showed anti-hemagglutinin (anti-HA) antibodies that were cross-reactive with the new strains. Different studies have demonstrated that prior contact with the virus can confer protection against strains with some degree of dissimilarity; however, this has not been sufficiently explored within the context of a pdmH1N1 virus infection. In this study, we have found that a first infection with the A/Brisbane/59/2007 virus strain confers heterologous protection in ferrets and mice against a subsequent pdmH1N1 (A/Mexico/4108/2009) virus infection through a cross-reactive but non-neutralizing antibody mechanism. Heterologous immunity is abrogated in B cell-deficient mice but maintained in CD8(-/-) and perforin-1(-/-) mice. We identified cross-reactive antibodies from A/Brisbane/59/2007 sera that recognize non-HA epitopes in pdmH1N1 virus. Passive serum transfer showed that cross-reactive sH1N1-induced antibodies conferred protection in naive recipient mice during pdmH1N1 virus challenge. The presence or absence of anti-HA antibodies, therefore, is not the sole indicator of the effectiveness of protective cross-reactive antibody immunity. Measurement of additional antibody repertoires targeting the non-HA antigens of influenza virus should be taken into consideration in assessing protection and immunization strategies. We propose that preexisting cross-protective non-HA antibody immunity may have had an overall protective effect during the 2009 pdmH1N1 outbreak, thereby reducing disease severity in human infections.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Antígenos CD8/inmunología , Protección Cruzada , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Embrión de Pollo , Femenino , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Gripe Humana/virología , Masculino , México/epidemiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pandemias
19.
J Virol ; 86(24): 13187-201, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23055557

RESUMEN

Young children are typically considered a high-risk group for disease associated with influenza virus infection. Interestingly, recent clinical reports suggested that young children were the smallest group of cases with severe pandemic 2009 H1N1 (H1N1pdm) influenza virus infection. Here we established a newly weaned ferret model for the investigation of H1N1pdm infection in young age groups compared to adults. We found that young ferrets had a significantly milder fever and less weight loss than adult ferrets, which paralleled the mild clinical symptoms in the younger humans. Although there was no significant difference in viral clearance, disease severity was associated with pulmonary pathology, where newly weaned ferrets had an earlier pathology improvement. We examined the immune responses associated with protection of the young age group during H1N1pdm infection. We found that interferon and regulatory interleukin-10 responses were more robust in the lungs of young ferrets. In contrast, myeloperoxidase and major histocompatibility complex responses were persistently higher in the adult lungs; as well, the numbers of inflammation-prone granulocytes were highly elevated in the adult peripheral blood. Importantly, we observed that H1N1pdm infection triggered formation of lung structures that resembled inducible bronchus-associated lymphoid tissues (iBALTs) in young ferrets which were associated with high levels of homeostatic chemokines CCL19 and CXCL13, but these were not seen in the adult ferrets with severe disease. These results may be extrapolated to a model of the mild disease seen in human children. Furthermore, these mechanistic analyses provide significant new insight into the developing immune system and effective strategies for intervention and vaccination against respiratory viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/inmunología , Gripe Humana/patología , Interferones/biosíntesis , Animales , Anticuerpos Antivirales/biosíntesis , Hurones , Humanos , Gripe Humana/virología , Interleucina-10/biosíntesis , Pulmón/metabolismo , Tejido Linfoide/inmunología , Tejido Linfoide/virología
20.
Viruses ; 15(9)2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37766327

RESUMEN

With the emergence of the novel betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there has been an urgent need for the development of fast-acting antivirals, particularly in dealing with different variants of concern (VOC). SARS-CoV-2, like other RNA viruses, depends on host cell machinery to propagate and misregulate metabolic pathways to its advantage. Herein, we discovered that the immunometabolic microRNA-185 (miR-185) restricts SARS-CoV-2 propagation by affecting its entry and infectivity. The antiviral effects of miR-185 were studied in SARS-CoV-2 Spike protein pseudotyped virus, surrogate virus (HCoV-229E), as well as live SARS-CoV-2 virus in Huh7, A549, and Calu-3 cells. In each model, we consistently observed microRNA-induced reduction in lipid metabolism pathways-associated genes including SREBP2, SQLE, PPARG, AGPAT3, and SCARB1. Interestingly, we also observed changes in angiotensin-converting enzyme 2 (ACE2) levels, the entry receptor for SARS-CoV-2. Taken together, these data show that miR-185 significantly restricts host metabolic and other pathways that appear to be essential to SAR-CoV-2 replication and propagation. Overall, this study highlights an important link between non-coding RNAs, immunometabolic pathways, and viral infection. miR-185 mimics alone or in combination with other antiviral therapeutics represent possible future fast-acting antiviral strategies that are likely to be broadly antiviral against multiple variants as well as different virus types of potential pandemics.


Asunto(s)
COVID-19 , MicroARNs , Humanos , SARS-CoV-2/genética , Antivirales/farmacología , MicroARNs/genética , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA