Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 572(7768): 194-198, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341281

RESUMEN

Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.


Asunto(s)
Mapeo Geográfico , Nematodos/clasificación , Nematodos/aislamiento & purificación , Suelo/parasitología , Animales , Biomasa , Carbono/metabolismo , Nematodos/química , Filogeografía , Reproducibilidad de los Resultados , Incertidumbre
2.
J Environ Manage ; 366: 121818, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002462

RESUMEN

Limiting the negative effects of an invasive species, such as Reynoutria japonica, has become a challenge for scientists and a necessity for managers. Ecologically relevant, technically feasible, and sustainable control methods must be created to reduce the development or spread of R. japonica in ecosystems. The objective of our study was to investigate how monthly mowing in association with plant competition affects the development of R. japonica over a three-year field experiment. Among the plant traits measured, the height growth of R. japonica was the most affected; it was strongly reduced in the presence of competing plants. Combined mowing and competition with restoration plants negatively affected the growth diameter of R. japonica. Most competitive sown species were well established and complementary in limiting the development of R. japonica. The plant communities showed interannual dynamics in which R. japonica declined progressively. The restoration methodology adopted in this study allows managers to make appropriate decisions to reduce the impact of R. japonica on ecosystems.

3.
Oecologia ; 194(3): 515-528, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33078281

RESUMEN

Above- and below-ground herbivory are key ecosystem processes that can be substantially altered by environmental changes. However, direct comparisons of the coupled variations of above- and below-ground herbivore communities along elevation gradients remain sparse. Here, we studied the variation in assemblages of two dominant groups of herbivores, namely, aboveground orthoptera and belowground nematodes, in grasslands along six elevation gradients in the Swiss Alps. By examining variations of community properties of herbivores and their food plants along montane clines, we sought to determine whether the structure and functional properties of these taxonomic groups change with elevation. We found that orthoptera decreased in both species richness and abundance with elevation. In contrast with aboveground herbivores, the taxonomic richness and the total abundance of nematode did not covary with elevation. We further found a stronger shift in above- than below-ground functional properties along elevation, where the mandibular strength of orthoptera matched a shift in leaf toughness. Nematodes showed a weaker pattern of declined sedentary behavior and increased mobility with elevation. In contrast to the direct exposal of aboveground organisms to the surface climate, conditions may be buffered belowground, which together with the influence of edaphic factors on the biodiversity of soil biota, may explain the differences between elevational patterns of above- and below-ground communities. Our study emphasizes the necessity to consider both the above- and below-ground compartments to understand the impact of current and future climatic variation on ecosystems, from a functional perspective of species interactions.


Asunto(s)
Herbivoria , Nematodos , Animales , Biodiversidad , Ecosistema , Suelo
4.
Ecol Lett ; 22(2): 292-301, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30488660

RESUMEN

Long-standing theory predicts herbivores and predators should drive selection for increased plant defences, such as the specific production of volatile organic compounds for attracting predators near the site of damage. Along elevation gradients, a general pattern is that herbivores and predators are abundant at low elevation and progressively diminish at higher elevations. To determine whether plant adaptation along such a gradient influences top-down control of herbivores, we manipulated soil predatory nematodes, root herbivore pressure and plant ecotypes in a reciprocal transplant experiment. Plant survival was significantly higher for low-elevation plants, but only when in the presence of predatory nematodes. Using olfactometer bioassays, we showed correlated differential nematode attraction and plant ecotype-specific variation in volatile production. This study not only provides an assessment of how elevation gradients modulate the strength of trophic cascades, but also demonstrates how habitat specialisation drives variation in the expression of indirect plant defences.


Asunto(s)
Cadena Alimentaria , Herbivoria , Conducta Predatoria , Animales , Ecosistema , Plantas
5.
Oecologia ; 187(2): 561-571, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29774426

RESUMEN

Predicting variation in plant functional traits related to anti-herbivore defences remains a major challenge in ecological research, considering that multiple traits have evolved in response to both abiotic and biotic conditions. Therefore, understanding variation in plant anti-herbivore defence traits requires studying their expression along steep environmental gradients, such as along elevation, where multiple biotic and abiotic factors co-vary. We expand on plant defence theory and propose a novel conceptual framework to address the sources of variations of plant resistance traits at the community level. We analysed elevation patterns of within-community trait dissimilarity using the RaoQ index, and the community-weighted-mean (CWM) index, on several plant functional traits: plant height, specific leaf area (SLA), leaf-dry-matter-content (LDMC), silicium content, presence of trichomes, carbon-to-nitrogen ratio (CN) and total secondary metabolite richness. We found that at high elevation, where harsh environmental conditions persist, community functional convergence is dictated by traits relating to plant growth (plant height and SLA), while divergence arises for traits relating resource-use (LDMC). At low elevation, where greater biotic pressure occurs, we found a combination of random (plant height), convergence (metabolite richness) and divergence patterns (silicium content). This framework thus combines community assembly rules of ecological filtering and niche partition with plant defence hypotheses to unravel the relationship between environmental variations, biotic pressure and the average phenotype of plants within a community.


Asunto(s)
Herbivoria , Plantas , Ecología , Fenotipo , Hojas de la Planta
6.
J Chem Ecol ; 41(4): 330-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25893791

RESUMEN

Volatile Organic Compounds (VOCs) released by plants are involved in various orientation processes of herbivorous insects and consequently play a crucial role in their reproductive success. In the context of developing new strategies for crop protection, several studies have previously demonstrated the possibility to limit insect density on crops using either host or non-host plants that release attractive or repellent VOCs, respectively. The cabbage root fly, Delia radicum, is an important pest of brassicaceous crops for which control methods have to be implemented. Several studies have shown that plant odors influence cabbage root fly behavior, but only few VOCs have been identified so far. The present study aimed at selecting both plants and olfactory stimuli that could be used in the development of a "push-pull" strategy against the cabbage root fly. Olfactometer results revealed that plants belonging to the same family, even to the same species, may exhibit different levels of attractiveness toward D. radicum. Plants that were found attractive in behavioral observations were characterized by high release rates of distinct terpenes, such as linalool, ß-caryophyllene, humulene, and α-farnesene. This study represents a first step to identify both attractive plants of agronomic interest, and additional volatiles that could be used in the context of trap crops to protect broccoli fields against the cabbage root fly.


Asunto(s)
Brassicaceae/química , Dípteros/efectos de los fármacos , Dípteros/fisiología , Compuestos Orgánicos Volátiles/farmacología , Animales , Femenino , Odorantes , Control Biológico de Vectores , Especificidad de la Especie
7.
R Soc Open Sci ; 11(7): 240890, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021775

RESUMEN

Plant metabolism is a key feature of biodiversity that remains underexploited in functional frameworks used in agroecology. Here, we study how phytochemical diversity considered at three organizational levels can promote pest control. In a factorial field experiment, we manipulated plant diversity in three monocultures and three mixed crops of oilseed rape to explore how intra- and interspecific phytochemical diversity affects pest infestation. We combined recent progress in metabolomics with classic metrics used in ecology to test a box of hypotheses grounded in plant defence theory. According to the hypothesis of 'phytochemically mediated coevolution', our study stresses the relationships between herbivore infestation and particular classes of specialized metabolites like glucosinolates. Among 178 significant relationships between metabolites and herbivory rates, only 20% were negative. At the plant level, phytochemical abundance and richness had poor predictive power on pest regulation. This challenges the hypothesis of 'synergistic effects'. At the crop cover level, in line with the hypothesis of 'associational resistance', the phytochemical dissimilarity between neighbouring plants limited pest infestation. We discuss the intricate links between associational resistance and bottom-up pest control. Bridging different levels of organization in agroecosystems helps to dissect the multi-scale relationships between phytochemistry and insect herbivory.

8.
J Insect Sci ; 13: 106, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24738954

RESUMEN

Biological control using Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae), an egg parasitoid wasp, was tested in Uruguay to reduce populations of lepidopteran pests on soybeans. It was observed that the commercial parasitoid dispensers, which were made of cardboard, were vulnerable to small predators that succeeded in entering and emptying the containers of all the eggs parasitized by T. pretiosum. Observations in a soybean crop showed that the only small, common predators present were two ant species. The species responsible for the above mentioned predation was determined from the results of a laboratory experiment in which the behavior of the two common ants was tested. A modification of the dispensers to prevent introduction of this ant has been proposed and successfully tested in the laboratory and in the field.


Asunto(s)
Hormigas/fisiología , Control Biológico de Vectores/métodos , Conducta Predatoria , Avispas/fisiología , Animales , Cadena Alimentaria , Mariposas Nocturnas/parasitología , Óvulo/fisiología , Glycine max/crecimiento & desarrollo , Especificidad de la Especie , Uruguay
9.
Science ; 370(6523): 1469-1473, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33335062

RESUMEN

Herbivory and plant defenses exhibit a coupled decline along elevation gradients. However, the current ecological equilibrium could be disrupted under climate change, with a faster upward range shift of animals than plants. Here, we experimentally simulated this upward herbivore range shift by translocating low-elevation herbivore insects to alpine grasslands. We report that the introduction of novel herbivores and increased herbivory disrupted the vertical functional organization of the plant canopy. By feeding preferentially on alpine plants with functional traits matching their low-elevation host plants, herbivores reduced the biomass of dominant alpine plant species and favored encroachment of herbivore-resistant small-stature plant species, inflating species richness. Supplementing a direct effect of temperature, novel biotic interactions represent a neglected but major driver of ecosystem modifications under climate change.


Asunto(s)
Cambio Climático , Pradera , Herbivoria , Plantas , Animales , Biomasa , Especies Introducidas
10.
Sci Rep ; 10(1): 2074, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034273

RESUMEN

One major goal in plant evolutionary ecology is to address how and why tritrophic interactions mediated by phytochemical plant defences vary across species, space, and time. In this study, we tested three classical hypotheses about plant defences: (i) the resource-availability hypothesis, (ii) the altitudinal/elevational gradient hypothesis and (iii) the defence escalation hypothesis. For this purpose, predatory soil nematodes were challenged to hunt for root herbivores based on volatile cues from damaged or intact roots of 18 Alpine Festuca grass species adapted to distinct climatic niches spanning 2000 meters of elevation. We found that adaptation into harsh, nutrient-limited alpine environments coincided with the production of specific blends of volatiles, highly attractive for nematodes. We also found that recently-diverged taxa exposed to herbivores released higher amounts of volatiles than ancestrally-diverged species. Therefore, our model provides evidence that belowground indirect plant defences associated with tritrophic interactions have evolved under two classical hypotheses in plant ecology. While phylogenetic drivers of volatile emissions point to the defence-escalation hypothesis, plant local adaptation of indirect defences is in line with the resource availability hypothesis.


Asunto(s)
Clima , Herbivoria , Nematodos , Fenómenos Fisiológicos de las Plantas/genética , Adaptación Fisiológica/genética , Altitud , Animales , Evolución Biológica , Ecosistema , Festuca/genética , Festuca/metabolismo , Festuca/fisiología , Herbivoria/genética , Herbivoria/fisiología , Filogeografía , Suelo , Compuestos Orgánicos Volátiles/metabolismo
11.
Sci Data ; 7(1): 103, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218461

RESUMEN

As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition. This dataset includes 6,825 georeferenced soil samples from all continents and biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, this dataset can help to gain insight into the spatial distribution patterns of soil nematode abundance and community composition, and the environmental drivers shaping these patterns.


Asunto(s)
Distribución Animal , Nematodos/clasificación , Animales , Ecosistema , Suelo
12.
Tree Physiol ; 39(4): 606-614, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597091

RESUMEN

Elevational gradients have been highly useful for understanding the underlying forces driving variation in plant traits and plant-insect herbivore interactions. A widely held view from these studies has been that greater herbivory under warmer and less variable climatic conditions found at low elevations has resulted in stronger herbivore selection on plant defences. However, this prediction has been called into question by conflicting empirical evidence, which could be explained by a number of causes such as an incomplete assessment of defensive strategies (ignoring other axes of defence such as defence inducibility) or unaccounted variation in abiotic factors along elevational clines. We conducted a greenhouse experiment testing for inter-specific variation in constitutive leaf chemical defences (phenolic compounds) and their inducibility in response to feeding by gypsy moth larvae (Lymantria dispar L., Lepidoptera) using saplings of 18 oak (Quercus, Fagaceae) species. These species vary in their elevational distribution and together span >2400 m in elevation, therefore allowing us to test for among-species elevational clines in defences based on the elevational range of each species. In addition, we further tested for elevational gradients in the correlated expression of constitutive defences and their inducibility and for associations between defences and climatic factors potentially underlying elevational gradients in defences. Our results showed that oak species with high elevational ranges exhibited a greater inducibility of phenolic compounds (hydrolysable tannins), but this gradient was not accounted for by climatic predictors. In contrast, constitutive defences and the correlated expression of constitutive phenolics and their inducibility did not exhibit elevational clines. Overall, this study builds towards a more robust and integrative understanding of how multivariate plant defensive phenotypes vary along ecological gradients and their underlying abiotic drivers.


Asunto(s)
Interacciones Huésped-Parásitos , Mariposas Nocturnas/fisiología , Enfermedades de las Plantas/inmunología , Quercus/fisiología , Taninos/metabolismo , Altitud , Animales , Ecología , Herbivoria , Fenotipo , Enfermedades de las Plantas/parasitología , Hojas de la Planta/química , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Quercus/química , Quercus/inmunología
13.
Insects ; 7(4)2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27916820

RESUMEN

Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes) and invertebrates included among the macrofauna of soils (arthropods and annelids) that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA