RESUMEN
A lateral expansion of molecular spoked wheels (MSWs) based on an all-phenylene backbone is described. The MSWs contain a central hub, six spokes, and a rim that is formed by a sixfold Yamamoto coupling of the respective non-cyclized dodecabromo precursor yielding MSWs with up to 30 phenylene rings in the perimeter. Attempts to prepare compounds of such size without flexible side groups at the spokes were unsuccessful, most probably due to an aggregation and accompanying oligomerization of the precursors during the cyclization. To overcome these problems, fluorene units are inserted into the spokes. These contain additional alkyl chains and lead to a curvature of the wheels. Quantum chemical calculations on the mechanism of the Yamamoto coupling lead to geometry and strain-related criteria for the successful rim closure to the respective MSW. Subsequently, MSWs are prepared with four and even six phenylene units at each edge of the hexagonal wheels. The resulting MSWs are characterized by spectroscopic methods, and additionally some of them are visualized via scanning tunneling microscopy (STM).