Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769152

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disease caused by mutations in the SACS gene, encoding the 520 kDa modular protein sacsin, which comprises multiple functional sequence domains that suggest a role either as a scaffold in protein folding or in proteostasis. Cells from patients with ARSACS display a distinct phenotype including altered organisation of the intermediate filament cytoskeleton and a hyperfused mitochondrial network where mitochondrial respiration is compromised. Here, we used vimentin bundling as a biomarker of sacsin function to test the therapeutic potential of Hsp90 inhibition with the C-terminal-domain-targeted compound KU-32, which has demonstrated mitochondrial activity. This study shows that ARSACS patient cells have significantly increased vimentin bundling compared to control, and this was also present in ARSACS carriers despite them being asymptomatic. We found that KU-32 treatment significantly reduced vimentin bundling in carrier and patient cells. We also found that cells from patients with ARSACS were unable to maintain mitochondrial membrane potential upon challenge with mitotoxins, and that the electron transport chain function was restored upon KU-32 treatment. Our preliminary findings presented here suggest that targeting the heat-shock response by Hsp90 inhibition alleviates vimentin bundling and may represent a promising area for the development of therapeutics for ARSACS.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Espasticidad Muscular/tratamiento farmacológico , Novobiocina/análogos & derivados , Ataxias Espinocerebelosas/congénito , Línea Celular , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Espasticidad Muscular/metabolismo , Novobiocina/farmacología , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/metabolismo , Vimentina/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299126

RESUMEN

Friedreich's ataxia (FRDA) is a comparatively rare autosomal recessive neurological disorder primarily caused by the homozygous expansion of a GAA trinucleotide repeat in intron 1 of the FXN gene. The repeat expansion causes gene silencing that results in deficiency of the frataxin protein leading to mitochondrial dysfunction, oxidative stress and cell death. The GAA repeat tract in some cases may be impure with sequence variations called interruptions. It has previously been observed that large interruptions of the GAA repeat tract, determined by abnormal MboII digestion, are very rare. Here we have used triplet repeat primed PCR (TP PCR) assays to identify small interruptions at the 5' and 3' ends of the GAA repeat tract through alterations in the electropherogram trace signal. We found that contrary to large interruptions, small interruptions are more common, with 3' interruptions being most frequent. Based on detection of interruptions by TP PCR assay, the patient cohort (n = 101) was stratified into four groups: 5' interruption, 3' interruption, both 5' and 3' interruptions or lacking interruption. Those patients with 3' interruptions were associated with shorter GAA1 repeat tracts and later ages at disease onset. The age at disease onset was modelled by a group-specific exponential decay model. Based on this modelling, a 3' interruption is predicted to delay disease onset by approximately 9 years relative to those lacking 5' and 3' interruptions. This highlights the key role of interruptions at the 3' end of the GAA repeat tract in modulating the disease phenotype and its impact on prognosis for the patient.


Asunto(s)
Ataxia de Friedreich/epidemiología , Ataxia de Friedreich/genética , Fenotipo , Expansión de Repetición de Trinucleótido , Adolescente , Adulto , Factores de Edad , Edad de Inicio , Niño , Estudios de Cohortes , Humanos , Persona de Mediana Edad , Reino Unido/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA