Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(6): 1276-1291.e9, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33539787

RESUMEN

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Carcinogénesis , Proteínas de Ciclo Celular , Glioblastoma , Factores de Intercambio de Guanina Nucleótido , Mitosis/efectos de la radiación , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/efectos de la radiación , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Mitosis/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38639242

RESUMEN

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Astrocitos , Diferenciación Celular , Proliferación Celular , Células-Madre Neurales , Transducción de Señal , Transactivadores , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Animales , Astrocitos/metabolismo , Astrocitos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Morfogenéticas Óseas/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteínas Serina-Treonina Quinasas
4.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38813860

RESUMEN

WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of ß1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Astrocitos , Diferenciación Celular , Proliferación Celular , Células-Madre Neurales , Transducción de Señal , Transactivadores , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Animales , Astrocitos/metabolismo , Astrocitos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Morfogenéticas Óseas/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteínas Serina-Treonina Quinasas
5.
Cell Mol Life Sci ; 81(1): 105, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413417

RESUMEN

Administration of multiple subanesthetic doses of ketamine increases the duration of antidepressant effects relative to a single ketamine dose, but the mechanisms mediating this sustained effect are unclear. Here, we demonstrate that ketamine's rapid and sustained effects on affective behavior are mediated by separate and temporally distinct mechanisms. The rapid effects of a single dose of ketamine result from increased activity of immature neurons in the hippocampal dentate gyrus without an increase in neurogenesis. Treatment with six doses of ketamine over two weeks doubled the duration of behavioral effects after the final ketamine injection. However, unlike ketamine's rapid effects, this more sustained behavioral effect did not correlate with increased immature neuron activity but instead correlated with increased numbers of calretinin-positive and doublecortin-positive immature neurons. This increase in neurogenesis was associated with a decrease in bone morphogenetic protein (BMP) signaling, a known inhibitor of neurogenesis. Injection of a BMP4-expressing lentivirus into the dentate gyrus maintained BMP signaling in the niche and blocked the sustained - but not the rapid - behavioral effects of ketamine, indicating that decreased BMP signaling is necessary for ketamine's sustained effects. Thus, although the rapid effects of ketamine result from increased activity of immature neurons in the dentate gyrus without requiring an increase in neurogenesis, ketamine's sustained effects require a decrease in BMP signaling and increased neurogenesis along with increased neuron activity. Understanding ketamine's dual mechanisms of action should help with the development of new rapid-acting therapies that also have safe, reliable, and sustained effects.


Asunto(s)
Ketamina , Ketamina/farmacología , Ketamina/metabolismo , Ketamina/uso terapéutico , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Neuronas/metabolismo , Transducción de Señal
6.
Genes Dev ; 29(7): 732-45, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25838542

RESUMEN

Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.


Asunto(s)
Apoptosis/genética , Diferenciación Celular/genética , Glioblastoma/genética , MicroARNs/metabolismo , Animales , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/fisiopatología , Humanos , Ratones , Ratones SCID , MicroARNs/administración & dosificación , MicroARNs/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Análisis de Supervivencia
7.
Cell Mol Life Sci ; 79(1): 31, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936033

RESUMEN

The benefits of current treatments for depression are limited by low response rates, delayed therapeutic effects, and multiple side effects. Antidepressants affect a variety of neurotransmitter systems in different areas of the brain, and the mechanisms underlying their convergent effects on behavior have been unclear. Here we identify hippocampal bone morphogenetic protein (BMP) signaling as a common downstream pathway that mediates the behavioral effects of five different antidepressant classes (fluoxetine, bupropion, duloxetine, vilazodone, trazodone) and of electroconvulsive therapy. All of these therapies decrease BMP signaling and enhance neurogenesis in the hippocampus. Preventing the decrease in BMP signaling blocks the effect of antidepressant treatment on behavioral phenotypes. Further, inhibition of BMP signaling in hippocampal newborn neurons is sufficient to produce an antidepressant effect, while chemogenetic silencing of newborn neurons prevents the antidepressant effect. Thus, inhibition of hippocampal BMP signaling is both necessary and sufficient to mediate the effects of multiple classes of antidepressants.


Asunto(s)
Antidepresivos/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Hipocampo/metabolismo , Transducción de Señal , Envejecimiento/patología , Animales , Ansiolíticos/farmacología , Conducta Animal/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Clorhidrato de Duloxetina/farmacología , Terapia Electroconvulsiva , Fluoxetina/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/complicaciones , Trazodona/farmacología , Clorhidrato de Vilazodona/farmacología
8.
Ann Neurol ; 87(3): 442-455, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31925846

RESUMEN

OBJECTIVE: There are currently no definitive disease-modifying therapies for traumatic brain injury (TBI). In this study, we present a strong therapeutic candidate for TBI, immunomodulatory nanoparticles (IMPs), which ablate a specific subset of hematogenous monocytes (hMos). We hypothesized that prevention of infiltration of these cells into brain acutely after TBI would attenuate secondary damage and preserve anatomic and neurologic function. METHODS: IMPs, composed of US Food and Drug Administration-approved 500nm carboxylated-poly(lactic-co-glycolic) acid, were infused intravenously into wild-type C57BL/6 mice following 2 different models of experimental TBI, controlled cortical impact (CCI), and closed head injury (CHI). RESULTS: IMP administration resulted in remarkable preservation of both tissue and neurological function in both CCI and CHI TBI models in mice. After acute treatment, there was a reduction in the number of immune cells infiltrating into the brain, mitigation of the inflammatory status of the infiltrating cells, improved electrophysiologic visual function, improved long-term motor behavior, reduced edema formation as assessed by magnetic resonance imaging, and reduced lesion volumes on anatomic examination. INTERPRETATION: Our findings suggest that IMPs are a clinically translatable acute intervention for TBI with a well-defined mechanism of action and beneficial anatomic and physiologic preservation and recovery. Ann Neurol 2020;87:442-455.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico , Administración Intravenosa , Animales , Encéfalo/inmunología , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/patología , Movimiento Celular/efectos de los fármacos , Edema/complicaciones , Edema/tratamiento farmacológico , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/química , Imagen por Resonancia Magnética , Masculino , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Neuroimagen , Recuperación de la Función/efectos de los fármacos
9.
Small ; 16(43): e2002616, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33006271

RESUMEN

Introducing exogenous molecules into cells with high efficiency and dosage control is a crucial step in basic research as well as clinical applications. Here, the capability of the nanofountain probe electroporation (NFP-E) system to deliver proteins and plasmids in a variety of continuous and primary cell types with appropriate dosage control is reported. It is shown that the NFP-E can achieve fine control over the relative expression of two cotransfected plasmids. Finally, the dynamics of electropore closure after the pulsing ends with the NFP-E is investigated. Localized electroporation has recently been utilized to demonstrate the converse process of delivery (sampling), in which a small volume of the cytosol is retrieved during electroporation without causing cell lysis. Single-cell temporal sampling confers the benefit of monitoring the same cell over time and can provide valuable insights into the mechanisms underlying processes such as stem cell differentiation and disease progression. NFP-E parameters that maximize the membrane resealing time, which is essential for increasing the sampled volume and in meeting the challenge of monitoring low copy number biomarkers, are identified. Its application in CRISPR/Cas9 gene editing, stem cell reprogramming, and single-cell sampling studies is envisioned.


Asunto(s)
Electroporación , Edición Génica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Plásmidos
10.
Small ; 16(26): e2000584, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32452612

RESUMEN

Measuring changes in enzymatic activity over time from small numbers of cells remains a significant technical challenge. In this work, a method for sampling the cytoplasm of cells is introduced to extract enzymes and measure their activity at multiple time points. A microfluidic device, termed the live cell analysis device (LCAD), is designed, where cells are cultured in microwell arrays fabricated on polymer membranes containing nanochannels. Localized electroporation of the cells opens transient pores in the cell membrane at the interface with the nanochannels, enabling extraction of enzymes into nanoliter-volume chambers. In the extraction chambers, the enzymes modify immobilized substrates, and their activity is quantified by self-assembled monolayers for matrix-assisted laser desorption/ionization (SAMDI) mass spectrometry. By employing the LCAD-SAMDI platform, protein delivery into cells is demonstrated. Next, it is shown that enzymes can be extracted, and their activity measured without a loss in viability. Lastly, cells are sampled at multiple time points to study changes in phosphatase activity in response to oxidation by hydrogen peroxide. With this unique sampling device and label-free assay format, the LCAD with SAMDI enables a powerful new method for monitoring the dynamics of cellular activity from small populations of cells.


Asunto(s)
Electroporación , Pruebas de Enzimas , Enzimas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Línea Celular Tumoral , Células/enzimología , Pruebas de Enzimas/instrumentación , Pruebas de Enzimas/métodos , Enzimas/análisis , Enzimas/metabolismo , Humanos , Tiempo
11.
Ann Neurol ; 85(5): 726-739, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840313

RESUMEN

OBJECTIVE: The apolipoprotein E (APOE) E4 isoform is the strongest genetic risk factor for sporadic Alzheimer disease (AD). Although APOE is predominantly expressed by astrocytes in the central nervous system, neuronal expression of APOE is of increasing interest in age-related cognitive impairment, neurological injury, and neurodegeneration. Here, we show that endogenous expression of E4 in stem-cell-derived neurons predisposes them to injury and promotes the release of phosphorylated tau. METHODS: Induced pluripotent stem cells from 2 unrelated AD patients carrying the E4 allele were corrected to the E3/E3 genotype with the CRISPR/Cas9 system and differentiated into pure cultures of forebrain excitatory neurons without contamination from other cells types. RESULTS: Compared to unedited E4 neurons, E3 neurons were less susceptible to ionomycin-induced cytotoxicity. Biochemically, E4 cells exhibited increased tau phosphorylation and ERK1/2 phosphoactivation. Moreover, E4 neurons released increased amounts of phosphorylated tau extracellularly in an isoform-dependent manner by a heparin sulfate proteoglycan-dependent mechanism. INTERPRETATION: Our results demonstrate that endogenous expression of E4 by stem-cell-derived forebrain excitatory neurons predisposes neurons to calcium dysregulation and ultimately cell death. This change is associated with increased cellular tau phosphorylation and markedly enhanced release of phosphorylated tau. Importantly, these effects are independent of glial APOE. These findings suggest that E4 accelerates spreading of tau pathology and neuron death in part by neuron-specific, glia-independent mechanisms. Ann Neurol 2019;85:726-739.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/biosíntesis , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Muerte Celular/fisiología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Neuronas/patología , Fosforilación/fisiología
12.
J Neurosci ; 38(15): 3840-3857, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29483282

RESUMEN

Astrocytes perform a wide array of physiological functions, including structural support, ion exchange, and neurotransmitter uptake. Despite this diversity, molecular markers that label subpopulations of astrocytes are limited, and mechanisms that generate distinct astrocyte subtypes remain unclear. Here we identified serine protease high temperature requirement A 1 (HtrA1), a bone morphogenetic protein 4 signaling regulated protein, as a novel marker of forebrain astrocytes, but not of neural stem cells, in adult mice of both sexes. Genetic deletion of HtrA1 during gliogenesis accelerates astrocyte differentiation. In addition, ablation of HtrA1 in cultured astrocytes leads to altered chondroitin sulfate proteoglycan expression and inhibition of neurite extension, along with elevated levels of transforming growth factor-ß family proteins. Brain injury induces HtrA1 expression in reactive astrocytes, and loss of HtrA1 leads to an impairment in wound closure accompanied by increased proliferation of endothelial and immune cells. Our findings demonstrate that HtrA1 is differentially expressed in adult mouse forebrain astrocytes, and that HtrA1 plays important roles in astrocytic development and injury response.SIGNIFICANCE STATEMENT Astrocytes, an abundant cell type in the brain, perform a wide array of physiological functions. Although characterized as morphologically and functionally diverse, molecular markers that label astrocyte subtypes or signaling pathways that lead to their diversity remain limited. Here, after examining the expression profile of astrocytes generated in response to bone morphogenetic protein signaling, we identify high temperature requirement A 1 (HtrA1) as an astrocyte-specific marker that is differentially expressed in distinct adult mouse brain regions. HtrA1 is a serine protease that has been linked to cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, a small blood vessel disease in humans. Understanding the role of HtrA1 during development and after injury will provide insights into how distinct astrocyte populations are generated and their unique roles in injury and disease.


Asunto(s)
Astrocitos/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Neurogénesis , Cicatrización de Heridas , Animales , Astrocitos/citología , Proliferación Celular , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Femenino , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Prosencéfalo/citología , Factor de Crecimiento Transformador beta/metabolismo
13.
Methods ; 133: 29-43, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29080741

RESUMEN

Proteins are drivers of cell functions and are targets of many therapies. Exogenous protein expression techniques, therefore, have been essential for research and medicine. The most common method for exogenous protein expression relies on DNA-based viral or non-viral vectors. However, DNA-based vectors have the potential to integrate into the host genome and cause permanent mutations. RNA-based vectors solve this shortcoming. In particular, synthetic modified mRNA provides non-viral, integration-free, zero-footprint method for expressing proteins. Modified mRNA can direct cell fate specification and cellular reprogramming faster and more efficiently than other methods. Furthermore, when simultaneously express multiple different proteins, mRNA vectors allow for greater flexibility and control over stoichiometric ratios, dose titrations, and complete silencing of expressions. Additionally, modified mRNAs have been shown to be viable and safe as therapeutic agents for gene therapy and vaccine, providing an alternative approach to address diseases. Despite these advantages, technical challenge, mRNA instability, and host immunogenicity have caused significant barriers to widespread use of this technology. The comprehensive method presented here addresses all of these shortcomings. This stepwise protocol describes every step necessary for the synthesis of modified mRNA from any coding DNA sequence of interest. The meticulously detailed protocol enables the users to make alterations to each component of modified mRNA for even more significant customization, allowing the researchers to apply this technology to a wide range of uses. This non-cytotoxic synthetic modified mRNA can be used for protein expression, regulation of cell reprogramming or differentiation, and drug delivery.


Asunto(s)
Terapia Genética , Células Madre Pluripotentes Inducidas , ARN Mensajero/química , ARN Mensajero/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , ADN/genética , Fibroblastos , Vectores Genéticos , Humanos , ARN Mensajero/biosíntesis , ARN Mensajero/uso terapéutico , Transfección
14.
Neurobiol Dis ; 116: 60-68, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29705186

RESUMEN

Gliosis and fibrosis after spinal cord injury (SCI) lead to formation of a scar that is an impediment to axonal regeneration. Fibrotic scarring is characterized by the accumulation of fibronectin, collagen, and fibroblasts at the lesion site. The mechanisms regulating fibrotic scarring after SCI and its effects on axonal elongation and functional recovery are not well understood. In this study, we examined the effects of eliminating an isoform of fibronectin containing the Extra Domain A domain (FnEDA) on both fibrosis and on functional recovery after contusion SCI using male and female FnEDA-null mice. Eliminating FnEDA did not reduce the acute fibrotic response but markedly diminished chronic fibrotic scarring after SCI. Glial scarring was unchanged after SCI in FnEDA-null mice. We found that FnEDA was important for the long-term stability of the assembled fibronectin matrix during both the subacute and chronic phases of SCI. Motor functional recovery was significantly improved, and there were increased numbers of axons in the lesion site compared to wildtype mice, suggesting that the chronic fibrotic response is detrimental to recovery. Our data provide insight into the mechanisms of fibrosis after SCI and suggest that disruption of fibronectin matrix stability by targeting FnEDA represents a potential therapeutic strategy for promoting recovery after SCI.


Asunto(s)
Cicatriz/metabolismo , Cicatriz/patología , Fibronectinas/deficiencia , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Femenino , Fibronectinas/genética , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Recuperación de la Función/fisiología
15.
Dev Neurosci ; 40(1): 23-38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324456

RESUMEN

Hypoxic-ischemic injury (HI) to the neonatal human brain results in myelin loss that, in some children, can manifest as cerebral palsy. Previously, we had found that neuronal overexpression of the bone morphogenic protein (BMP) inhibitor noggin during development increased oligodendroglia and improved motor function in an experimental model of HI utilizing unilateral common carotid artery ligation followed by hypoxia. As BMPs are known to negatively regulate oligodendroglial fate specification of neural stem cells and alter differentiation of committed oligodendroglia, BMP signaling is likely an important mechanism leading to myelin loss. Here, we showed that BMP signaling is upregulated within oligodendroglia of the neonatal brain. We tested the hypothesis that inhibition of BMP signaling specifically within neural progenitor cells (NPCs) is sufficient to protect oligodendroglia. We conditionally deleted the BMP receptor 2 subtype (BMPR2) in NG2-expressing cells after HI. We found that BMPR2 deletion globally protects the brain as assessed by MRI and protects motor function as assessed by digital gait analysis, and that conditional deletion of BMPR2 maintains oligodendrocyte marker expression by immunofluorescence and Western blot and prevents loss of oligodendroglia. Finally, BMPR2 deletion after HI results in an increase in noncompacted myelin. Thus, our data indicate that inhibition of BMP signaling specifically in NPCs may be a tractable strategy to protect the newborn brain from HI.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Encéfalo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Actividad Motora/fisiología , Células-Madre Neurales/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Silenciamiento del Gen , Hipoxia-Isquemia Encefálica/patología , Ratones , Ratones Endogámicos C57BL , Oligodendroglía/metabolismo , Transducción de Señal/fisiología
16.
Neurobiol Dis ; 108: 73-82, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28823935

RESUMEN

Intravenously infused synthetic 500nm nanoparticles composed of poly(lactide-co-glycolide) are taken up by blood-borne inflammatory monocytes via a macrophage scavenger receptor (macrophage receptor with collagenous structure), and the monocytes no longer traffic to sites of inflammation. Intravenous administration of the nanoparticles after experimental spinal cord injury in mice safely and selectively limited infiltration of hematogenous monocytes into the injury site. The nanoparticles did not bind to resident microglia, and did not change the number of microglia in the injured spinal cord. Nanoparticle administration reduced M1 macrophage polarization and microglia activation, reduced levels of inflammatory cytokines, and markedly reduced fibrotic scar formation without altering glial scarring. These findings thus implicate early-infiltrating hematogenous monocytes as highly selective contributors to fibrosis that do not play an indispensable role in gliosis after SCI. Further, the nanoparticle treatment reduced accumulation of chondroitin sulfate proteoglycans, increased axon density inside and caudal to the lesion site, and significantly improved functional recovery after both moderate and severe injuries to the spinal cord. These data provide further evidence that hematogenous monocytes contribute to inflammatory damage and fibrotic scar formation after spinal cord injury in mice. Further, since the nanoparticles are simple to administer intravenously, immunologically inert, stable at room temperature, composed of an FDA-approved material, and have no known toxicity, these findings suggest that the nanoparticles potentially offer a practical treatment for human spinal cord injury.


Asunto(s)
Factores Inmunológicos/administración & dosificación , Nanopartículas/administración & dosificación , Poliglactina 910/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Administración Intravenosa , Animales , Axones/efectos de los fármacos , Axones/inmunología , Axones/patología , Tamaño de la Célula , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cicatriz/tratamiento farmacológico , Cicatriz/inmunología , Cicatriz/patología , Modelos Animales de Enfermedad , Femenino , Fibrosis/tratamiento farmacológico , Fibrosis/inmunología , Fibrosis/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/patología , Actividad Motora/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/patología , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/patología
18.
J Neurosci ; 35(9): 3725-33, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25740503

RESUMEN

Astrogliosis after spinal cord injury (SCI) is a major impediment to functional recovery. More than half of new astrocytes generated after SCI are derived from ependymal zone stem cells (EZCs). We demonstrate that expression of ß1-integrin increases in EZCs following SCI in mice. Conditional knock-out of ß1-integrin increases GFAP expression and astrocytic differentiation by cultured EZCs without altering oligodendroglial or neuronal differentiation. Ablation of ß1-integrin from EZCs in vivo reduced the number of EZC progeny that continued to express stem cell markers after SCI, increased the proportion of EZC progeny that differentiated into GFAP+ astrocytes, and diminished functional recovery. Loss of ß1-integrin increased SMAD1/5/8 and p38 signaling, suggesting activation of BMP signaling. Coimmunoprecipitation studies demonstrated that ß1-integrin directly interacts with the bone morphogenetic protein receptor subunits BMPR1a and BMPR1b. Ablation of ß1-integrin reduced overall levels of BMP receptors but significantly increased partitioning of BMPR1b into lipid rafts with increased SMAD1/5/8 and p38 signaling. Thus ß1-integrin expression by EZCs reduces movement of BMPR1b into lipid rafts, thereby limiting the known deleterious effects of BMPR1b signaling on glial scar formation after SCI.


Asunto(s)
Astrocitos/efectos de los fármacos , Receptores de Proteínas Morfogenéticas Óseas/efectos de los fármacos , Epéndimo/citología , Gliosis/tratamiento farmacológico , Integrina beta1/farmacología , Células-Madre Neurales/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/etiología , Gliosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología
19.
Glia ; 64(7): 1235-51, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27145730

RESUMEN

Integrins are transmembrane receptors that mediate cell-extracellular matrix and cell-cell interactions. The ß1-integrin subunit is highly expressed by embryonic neural stem cells (NSCs) and is critical for NSC maintenance in the developing nervous system, but its role in the adult hippocampal niche remains unexplored. We show that ß1-integrin expression in the adult mouse dentate gyrus (DG) is localized to radial NSCs and early progenitors, but is lost in more mature progeny. Although NSCs in the hippocampal subgranular zone (SGZ) normally only infrequently differentiate into astrocytes, deletion of ß1-integrin significantly enhanced astrocyte differentiation. Ablation of ß1-integrin also led to reduced neurogenesis as well as depletion of the radial NSC population. Activation of integrin-linked kinase (ILK) in cultured adult NSCs from ß1-integrin knockout mice reduced astrocyte differentiation, suggesting that at least some of the inhibitory effects of ß1-integrin on astrocytic differentiation are mediated through ILK. In addition, ß1-integrin conditional knockout also resulted in extensive cellular disorganization of the SGZ as well as non-neurogenic regions of the DG. The effects of ß1-integrin ablation on DG structure and astrogliogenesis show sex-specific differences, with the effects following a substantially slower time-course in males. ß1-integrin thus plays a dual role in maintaining the adult hippocampal NSC population by supporting the structural integrity of the NSC niche and by inhibiting astrocytic lineage commitment. GLIA 2016;64:1235-1251.


Asunto(s)
Astrocitos/fisiología , Diferenciación Celular/fisiología , Hipocampo/citología , Integrina beta1/metabolismo , Células-Madre Neurales/fisiología , Animales , Células Cultivadas , Proteínas de Dominio Doblecortina , Femenino , Regulación de la Expresión Génica/genética , Integrina beta1/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Factores Sexuales
20.
Nano Lett ; 15(1): 603-9, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25546084

RESUMEN

We report the construction of DNA nanotubes covalently functionalized with the cell adhesion peptide RGDS as a bioactive substrate for neural stem cell differentiation. Alteration of the Watson-Crick base pairing program that builds the nanostructures allowed us to probe independently the effect of nanotube architecture and peptide bioactivity on stem cell differentiation. We found that both factors instruct synergistically the preferential differentiation of the cells into neurons rather than astrocytes.


Asunto(s)
Diferenciación Celular , ADN/química , Nanotubos de Péptidos/química , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Oligopéptidos/química , Animales , Células Cultivadas , Ratones , Células-Madre Neurales/citología , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA