RESUMEN
Objective@#Differentiating intracranial aneurysms from normal variants using CT angiography (CTA) or MR angiography (MRA) poses significant challenges. This study aimed to evaluate the efficacy of proton-density MRA (PD-MRA) compared to highresolution time-of-flight MRA (HR-MRA) in diagnosing aneurysms among patients with indeterminate findings on conventional CTA or MRA. @*Materials and Methods@#In this retrospective analysis, we included patients who underwent both PD-MRA and HR-MRA from August 2020 to July 2022 to assess lesions deemed indeterminate on prior conventional CTA or MRA examinations. Three experienced neuroradiologists independently reviewed the lesions using HR-MRA and PD-MRA with reconstructed voxel sizes of 0.253 mm3 or 0.23 mm3 , respectively. A neurointerventionist established the gold standard with digital subtraction angiography.We compared the performance of HR-MRA, PD-MRA (0.253 -mm3 voxel), and PD-MRA (0.23 -mm3 voxel) in diagnosing aneurysms, both per lesion and per patient. The Fleiss kappa statistic was used to calculate inter-reader agreement. @*Results@#The study involved 109 patients (average age 57.4 ± 11.0 years; male:female ratio, 11:98) with 141 indeterminate lesions. Of these, 78 lesions (55.3%) in 69 patients were confirmed as aneurysms by the reference standard. PD-MRA (0.253 -mm3voxel) exhibited significantly higher per-lesion diagnostic performance compared to HR-MRA across all three readers: sensitivity ranged from 87.2%–91.0% versus 66.7%–70.5%; specificity from 93.7%–96.8% versus 58.7%–68.3%; and accuracy from 90.8%–92.9% versus 63.8%–69.5% (P ≤ 0.003). Furthermore, PD-MRA (0.253 -mm3 voxel) demonstrated significantly superior per-patient specificity and accuracy compared to HR-MRA across all evaluators (P ≤ 0.013). The diagnostic accuracy of PD-MRA (0.23 -mm3 voxel) surpassed that of HR-MRA and was comparable to PD-MRA (0.253 -mm3 voxel). The kappa values for inter-reader agreements were significantly higher in PD-MRA (0.820–0.938) than in HR-MRA (0.447–0.510). @*Conclusion@#PD-MRA outperformed HR-MRA in diagnostic accuracy and demonstrated almost perfect inter-reader consistency in identifying intracranial aneurysms among patients with lesions initially indeterminate on CTA or MRA.