Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 17(15): e2004258, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33094918

RESUMEN

Cardiotoxicity is one of the most serious side effects of cancer chemotherapy. Current approaches to monitoring of chemotherapy-induced cardiotoxicity (CIC) as well as model systems that develop in vivo or in vitro CIC platforms fail to notice early signs of CIC. Moreover, breast cancer (BC) patients with preexisting cardiac dysfunctions may lead to different incident levels of CIC. Here, a model is presented for investigating CIC where not only induced pluripotent stem cell (iPSC)-derived cardiac tissues are interacted with BC tissues on a dual-organ platform, but electrochemical immuno-aptasensors can also monitor cell-secreted multiple biomarkers. Fibrotic stages of iPSC-derived cardiac tissues are promoted with a supplement of transforming growth factor-ß 1 to assess the differential functionality in healthy and fibrotic cardiac tissues after treatment with doxorubicin (DOX). The production trend of biomarkers evaluated by using the immuno-aptasensors well-matches the outcomes from conventional enzyme-linked immunosorbent assay, demonstrating the accuracy of the authors' sensing platform with much higher sensitivity and lower detection limits for early monitoring of CIC and BC progression. Furthermore, the versatility of this platform is demonstrated by applying a nanoparticle-based DOX-delivery system. The proposed platform would potentially help allow early detection and prediction of CIC in individual patients in the future.


Asunto(s)
Neoplasias de la Mama , Cardiotoxicidad , Neoplasias de la Mama/tratamiento farmacológico , Cardiotoxicidad/diagnóstico , Cardiotoxicidad/etiología , Doxorrubicina/efectos adversos , Femenino , Corazón , Humanos , Dispositivos Laboratorio en un Chip , Miocitos Cardíacos
2.
Pediatr Res ; 89(5): 1245-1252, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32634817

RESUMEN

BACKGROUND: We investigated whether plasma high-sensitivity cardiac troponin T (hs-cTnT) and circulating heart-associated microRNA (miRs) are increased in children with leukaemias during anthracycline-based chemotherapeutic treatment. METHODS: In vitro human pluripotent stem cell (hPSC)-derived cardiomyocyte model showed that miR-1, miR-133a, miR-208a, miR-208b, and miR-499 are released from cells into culture medium in a time- and dose-dependent manner on doxorubicin exposure. Left ventricular (LV) myocardial deformation and circulating heart-associated miRs and plasma hs-cTnT during and after completion of chemotherapy were determined in 40 children with newly diagnosed acute leukaemia. RESULTS: Significant reduction of LV global longitudinal strain and strain rates were found within 1 week after completion of anthracycline therapy in the induction phase of treatment (all p < 0.05). Hs-cTnT level peaked and miR-1 increased significantly at this time point. Log-transformed hs-cTnT correlated negatively with LV global systolic longitudinal strain (r = -0.38, p < 0.001). Receiver operating characteristic analysis revealed that area under the curve for changes in plasma hs-cTnT from baseline and plasma miR-1 levels in detecting a reduction in ≥20% of global longitudinal strain were respectively 0.62 (95% CI 0.38-0.87) and 0.62 (95% CI 0.40-0.84). CONCLUSION: Plasma hs-cTnT and circulating miR-1 may be useful markers of myocardial damage during chemotherapy in children with leukaemias. IMPACT: Heart-associated miRNAs including miR-1, miR-133a, miR-208a, miR-208b,and miR-499 were increased in the culture medium upon exposure of hPSC-derived cardiomyocytes to doxorubicin. Only miR-1 increased significantly during anthracycline-based therapy in paediatric leukaemic patients. In paediatric leukaemic patients, plasma hs-cTnT and circulating level of miR-1 showed the most significant increase within 1 week after completion of anthracycline therapy in the induction treatment phase. The study provides the first evidence of progressive increase in circulating miR-1 and plasma hs-cTnT levels during the course of anthracycline-based therapy in children with leukaemias, with hs-cTnT level also associated with changes in LV myocardial deformation.


Asunto(s)
Antraciclinas/química , Corazón/fisiología , MicroARNs/sangre , Células Madre Pluripotentes/citología , Troponina T/sangre , Disfunción Ventricular Izquierda/complicaciones , Adolescente , Antineoplásicos/farmacología , Niño , Preescolar , Medios de Cultivo , Doxorrubicina , Femenino , Humanos , Técnicas In Vitro , Lactante , Masculino , Miocardio/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Disfunción Ventricular Izquierda/diagnóstico
3.
Adv Funct Mater ; 30(12)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33071707

RESUMEN

Bioprinting holds great promise towards engineering functional cardiac tissue constructs for regenerative medicine and as drug test models. However, it is highly limited by the choice of inks that require maintaining a balance between the structure and functional properties associated with the cardiac tissue. In this regard, we have developed a novel and mechanically robust biomaterial-ink based on non-mulberry silk fibroin protein. The silk-based ink demonstrated suitable mechanical properties required in terms of elasticity and stiffness (~40 kPa) for developing clinically relevant cardiac tissue constructs. The ink allowed the fabrication of stable anisotropic scaffolds using a dual crosslinking method, which were able to support formation of aligned sarcomeres, high expression of gap junction proteins as connexin-43, and maintain synchronously beating of cardiomyocytes. The printed constructs were found to be non-immunogenic in vitro and in vivo. Furthermore, delving into an innovative method for fabricating a vascularized myocardial tissue-on-a-chip, the silk-based ink was used as supporting hydrogel for encapsulating human induced pluripotent stem cell derived cardiac spheroids (hiPSC-CSs) and creating perfusable vascularized channels via an embedded bioprinting technique. We confirmed the ability of silk-based supporting hydrogel towards maturation and viability of hiPSC-CSs and endothelial cells, and for applications in evaluating drug toxicity.

4.
Am J Physiol Heart Circ Physiol ; 317(5): H1105-H1115, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31347915

RESUMEN

Human pluripotent stem cell (hPSCs)-derived ventricular (V) cardiomyocytes (CMs) display immature Ca2+-handing properties with smaller transient amplitudes and slower kinetics due to such differences in crucial Ca2+-handling proteins as the poor sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump but robust Na+-Ca2+ exchanger (NCX) activities in human embryonic stem cell (ESC)-derived VCMs compared with adult. Despite their fundamental importance in excitation-contraction coupling, the relative contribution of SERCA and NCX to Ca2+-handling of hPSC-VCMs remains unexplored. We systematically altered the activities of SERCA and NCX in human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs) and their engineered microtissues, followed by examining the resultant phenotypic consequences. SERCA overexpression in hESC-VCMs shortened the decay of Ca2+ transient at low frequencies (0.5 Hz) without affecting the amplitude, SR Ca2+ content and Ca2+ baseline. Interestingly, short hairpin RNA-based NCX suppression did not prolong the transient decay, indicating a compensatory response for Ca2+ removal. Although hESC-VCMs and their derived microtissues exhibited negative frequency-transient/force responses, SERCA overexpression rendered them less negative at high frequencies (>2 Hz) by accelerating Ca2+ sequestration. We conclude that for hESC-VCMs and their microtissues, SERCA, rather than NCX, is the main Ca2+ remover during diastole; poor SERCA expression is the leading cause for immature negative-frequency/force responses, which can be partially reverted by forced expression. Combinatorial approach to mature calcium handling in hESC-VCMs may help shed further mechanistic insights.NEW & NOTEWORTHY In this study of human pluripotent stem cell-derived cardiomyocytes, we studied the role of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+-Ca2+ exchanger (NCX) in Ca2+ handling. Our data support the notion that SERCA is more effective in cytosolic calcium removal than the NCX.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Células Madre Embrionarias Humanas/enzimología , Contracción Miocárdica , Miocitos Cardíacos/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Humanos , Fenotipo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Intercambiador de Sodio-Calcio/genética , Factores de Tiempo
5.
Stem Cells ; 36(4): 501-513, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29271023

RESUMEN

Autophagy is a process essential for cell survival under stress condition. The patients with autosomal dominant polycystic kidney disease, which is caused by polycystin-1 or polycystin-2 (PKD2) mutation, display cardiovascular abnormalities and dysregulation in autophagy. However, it is unclear whether PKD2 plays a role in autophagy. In the present study, we explored the functional role of PKD2 in autophagy and apoptosis in human embryonic stem cell-derived cardiomyocytes. HES2 hESC line-derived cardiomyocytes (HES2-CMs) were transduced with adenoviral-based PKD2-shRNAs (Ad-PKD2-shRNAs), and then cultured with normal or glucose-free medium for 3 hours. Autophagy was upregulated in HES2-CMs under glucose starvation, as indicated by increased microtubule-associated protein 1 light chain 3-II level in immunoblots and increased autophagosome and autolysosome formation. Knockdown of PKD2 reduced the autophagic flux and increased apoptosis under glucose starvation. In Ca2+ measurement, Ad-PKD2-shRNAs reduced caffeine-induced cytosolic Ca2+ rise. Co-immunoprecipitation and in situ proximity ligation assay demonstrated an increased physical interaction of PKD2 with ryanodine receptor 2 (RyR2) under glucose starvation condition. Furthermore, Ad-PKD2-shRNAs substantially attenuated the starvation-induced activation of AMP-activated protein kinase (AMPK) and inactivation of mammalian target of rapamycin (mTOR). The present study for the first time demonstrates that PKD2 functions to promote autophagy under glucose starvation, thereby protects cardiomyocytes from apoptotic cell death. The mechanism may involve PKD2 interaction with RyR2 to alter Ca2+ release from sarcoplasmic reticulum, consequently modulating the activity of AMPK and mTOR, resulting in alteration of autophagy and apoptosis. Stem Cells 2018;36:501-513.


Asunto(s)
Autofagia , Glucosa/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPP/biosíntesis , Apoptosis , Línea Celular , Glucosa/genética , Células Madre Embrionarias Humanas/citología , Humanos , Miocitos Cardíacos/citología , Canales Catiónicos TRPP/genética
6.
Mol Ther ; 26(7): 1644-1659, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606507

RESUMEN

The generation of human pluripotent stem cell (hPSC)-derived ventricular progenitors and their assembly into a 3-dimensional in vivo functional ventricular heart patch has remained an elusive goal. Herein, we report the generation of an enriched pool of hPSC-derived ventricular progenitors (HVPs), which can expand, differentiate, self-assemble, and mature into a functional ventricular patch in vivo without the aid of any gel or matrix. We documented a specific temporal window, in which the HVPs will engraft in vivo. On day 6 of differentiation, HVPs were enriched by depleting cells positive for pluripotency marker TRA-1-60 with magnetic-activated cell sorting (MACS), and 3 million sorted cells were sub-capsularly transplanted onto kidneys of NSG mice where, after 2 months, they formed a 7 mm × 3 mm × 4 mm myocardial patch resembling the ventricular wall. The graft acquired several features of maturation: expression of ventricular marker (MLC2v), desmosomes, appearance of T-tubule-like structures, and electrophysiological action potential signature consistent with maturation, all this in a non-cardiac environment. We further demonstrated that HVPs transplanted into un-injured hearts of NSG mice remain viable for up to 8 months. Moreover, transplantation of 2 million HVPs largely preserved myocardial contractile function following myocardial infarction. Taken together, our study reaffirms the promising idea of using progenitor cells for regenerative therapy.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Proteínas con Homeodominio LIM/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/fisiología , Separación Celular/métodos , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología
7.
J Mol Cell Cardiol ; 120: 1-11, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29758225

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes have potential applications in disease modeling and drug screening. Therefore, it is important to understand the mechanisms and signaling pathways underlying the survival and death of these cells. Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding in the ER. Cells cope with ER stress by activating the unfolded protein response (UPR), a homeostatic signaling network that orchestrates the recovery of ER function. In the present study, we hypothesized that ER stress may upregulate the expression of transient receptor potential channel TRPV6, which in turn serves to protect human embryonic stem cell-derived cardiomyocytes (hESC-CMs) from ER stress-induced apoptotic cell death. Indeed, we found that ER stress induced by thapsigargin and tunicamycin led to increased expression of TRPV6 via ATF6α signaling branch. siRNA-mediated knockdown of TRPV6 aggravated ER stress-induced apoptotic cell death, whereas overexpression of TRPV6 attenuated ER stress-induced apoptosis in hESC-CMs. Furthermore, the signaling pathway downstream of TRPV6 was MAPK-JNK. Taken together, these results provide strong evidence that, under ER stress, TRPV6 is upregulated to protect hESC-CMs from apoptotic cell death via ATF6α-TRPV6-JNK pathway.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Apoptosis/fisiología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Células Madre Embrionarias Humanas/metabolismo , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Análisis de Varianza , Calcio/metabolismo , Línea Celular , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Humanos , Sistema de Señalización de MAP Quinasas , Pliegue de Proteína , ARN Interferente Pequeño , Transducción de Señal , Respuesta de Proteína Desplegada
8.
Biochem Biophys Res Commun ; 494(1-2): 346-351, 2017 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-28989025

RESUMEN

Malfunction of nodal pacemaker (Pm) cardiomyocytes (CMs) due to diseases or aging leads to rhythm generation disorders, necessitating electronic Pm implantation. We functionally reprogrammed human pluripotent stem cell (hPSC) derived-ventricular (V) CMs into -PmCMs via recombinant adeno-associated virus serotype 9 (rAAV9)-mediated overexpression of engineered HCN1 channel (HCN1ΔΔΔ) whose S3-S4 linker has been strategically deleted by design to promote cardiac pacemaking. rAAV9-HCN1ΔΔΔ-reprogrammed hPSC-PmCMs converted from -VCMs showed automaticity and action potential parameters typical of native nodal PmCMs. Implantation of rAAV9-HCN1ΔΔΔ-based BPm in a preclinical porcine model of complete heart block significantly reduced the dependence on device-supported pacing and generated spontaneous heart rhythms from the BPm. Collectively, these results have further laid the groundwork on BPm for future translation.


Asunto(s)
Dependovirus/metabolismo , Bloqueo Cardíaco/terapia , Ventrículos Cardíacos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Canales de Potasio/metabolismo , Potenciales de Acción/fisiología , Animales , Diferenciación Celular , Reprogramación Celular , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Bloqueo Cardíaco/genética , Bloqueo Cardíaco/metabolismo , Bloqueo Cardíaco/fisiopatología , Frecuencia Cardíaca/fisiología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Miocitos Cardíacos/citología , Marcapaso Artificial , Células Madre Pluripotentes/citología , Canales de Potasio/genética , Porcinos
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2964-2972, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28754452

RESUMEN

Dilated cardiomyopathy (DCM) is cardiac disease characterized by increased left ventricular chamber volume and decreased systolic function. DCM patient-specific human induced-pluripotent stem cells-derived cardiomyocytes (DCM-hiPSC-CMs) were generated. We found that uniaxial stretch elicited a cytosolic [Ca2+]i rise in hiPSC-CMs. Compared to control-hiPSC-CMs, DCM-hiPSC-CMs displayed a greater magnitude of [Ca2+]i responses to the cell stretch of 10-15% elongation in length. This stretch-induced [Ca2+]i rise was abolished by removal of extracellular Ca2+ and markedly attenuated by TRPV4 inhibitors HC-067047 and RN-1734. Application of nifedipine and tranilast also reduced the [Ca2+]i response but to a lesser degree. Moreover, the augmented [Ca2+]i was decreased by cytochalasin D treatment. Taken together, our study for the first time demonstrated an abnormal TRPV4-related mechanosensitive Ca2+ signaling in DCM-hiPSC-CMs.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Citosol/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPV/metabolismo , Cardiomiopatía Dilatada/patología , Citosol/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Miocitos Cardíacos/patología
10.
Circ Res ; 117(1): 41-51, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25977309

RESUMEN

RATIONALE: Post-ischemic contractile dysfunction is a contributor to morbidity and mortality after the surgical correction of congenital heart defects in neonatal patients. Pre-existing hypertrophy in the newborn heart can exacerbate these ischemic injuries, which may partly be due to a decreased energy supply to the heart resulting from low fatty acid ß-oxidation rates. OBJECTIVE: We determined whether stimulating fatty acid ß-oxidation with GW7647, a peroxisome proliferator-activated receptor-α (PPARα) activator, would improve cardiac energy production and post-ischemic functional recovery in neonatal rabbit hearts subjected to volume overload-induced cardiac hypertrophy. METHODS AND RESULTS: Volume-overload cardiac hypertrophy was produced in 7-day-old rabbits via an aorto-caval shunt, after which, the rabbits were treated with or without GW7647 (3 mg/kg per day) for 14 days. Biventricular working hearts were subjected to 35 minutes of aerobic perfusion, 25 minutes of global no-flow ischemia, and 30 minutes of aerobic reperfusion. GW7647 treatment did not prevent the development of cardiac hypertrophy, but did prevent the decline in left ventricular ejection fraction in vivo. GW7647 treatment increased cardiac fatty acid ß-oxidation rates before and after ischemia, which resulted in a significant increase in overall ATP production and an improved in vitro post-ischemic functional recovery. A decrease in post-ischemic proton production and endoplasmic reticulum stress, as well as an activation of sarcoplasmic reticulum calcium ATPase isoform 2 and citrate synthase, was evident in GW7647-treated hearts. CONCLUSIONS: Stimulating fatty acid ß-oxidation in neonatal hearts may present a novel cardioprotective intervention to limit post-ischemic contractile dysfunction.


Asunto(s)
Butiratos/uso terapéutico , Cardiomegalia/fisiopatología , Contracción Miocárdica/fisiología , Isquemia Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , PPAR alfa/agonistas , Compuestos de Fenilurea/uso terapéutico , ATP Citrato (pro-S)-Liasa/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Animales Recién Nacidos , Butiratos/farmacología , ATPasas Transportadoras de Calcio/metabolismo , Cardiomegalia/prevención & control , Ciclo del Ácido Cítrico/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Femenino , Glucólisis , Corazón/efectos de los fármacos , Inflamación , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , PPAR alfa/fisiología , Compuestos de Fenilurea/farmacología , Conejos , Retículo Sarcoplasmático/enzimología , Volumen Sistólico/efectos de los fármacos
12.
Lipids Health Dis ; 16(1): 12, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28095860

RESUMEN

Atherosclerosis represents a significant cause of morbidity and mortality in both the developed and developing countries. Animal models of atherosclerosis have served as valuable tools for providing insights on its aetiology, pathophysiology and complications. They can be used for invasive interrogation of physiological function and provide a platform for testing the efficacy and safety of different pharmacological therapies. Compared to studies using human subjects, animal models have the advantages of being easier to manage, with controllable diet and environmental risk factors. Moreover, pathophysiological changes can be induced either genetically or pharmacologically to study the harmful effects of these interventions. There is no single ideal animal model, as different systems are suitable for different research objectives. A good understanding of the similarities and differences to humans enables effective extrapolation of data for translational application. In this article, we will examine the different mouse models for the study and elucidation of the pathophysiological mechanisms underlying atherosclerosis. We also review recent advances in the field, such as the role of oxidative stress in promoting endoplasmic reticulum stress, mitochondrial dysfunction and mitochondrial DNA damage, which can result in vascular inflammation and atherosclerosis. Finally, novel therapeutic approaches to reduce vascular damage caused by chronic inflammation using microRNA and nano-medicine technology, are discussed.


Asunto(s)
Aterosclerosis/fisiopatología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Estrés Oxidativo , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Daño del ADN , ADN Mitocondrial , Inflamación/tratamiento farmacológico , Ratones
13.
Anal Chem ; 88(20): 10019-10027, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27617489

RESUMEN

Continual monitoring of secreted biomarkers from organ-on-a-chip models is desired to understand their responses to drug exposure in a noninvasive manner. To achieve this goal, analytical methods capable of monitoring trace amounts of secreted biomarkers are of particular interest. However, a majority of existing biosensing techniques suffer from limited sensitivity, selectivity, stability, and require large working volumes, especially when cell culture medium is involved, which usually contains a plethora of nonspecific binding proteins and interfering compounds. Hence, novel analytical platforms are needed to provide noninvasive, accurate information on the status of organoids at low working volumes. Here, we report a novel microfluidic aptamer-based electrochemical biosensing platform for monitoring damage to cardiac organoids. The system is scalable, low-cost, and compatible with microfluidic platforms easing its integration with microfluidic bioreactors. To create the creatine kinase (CK)-MB biosensor, the microelectrode was functionalized with aptamers that are specific to CK-MB biomarker secreted from a damaged cardiac tissue. Compared to antibody-based sensors, the proposed aptamer-based system was highly sensitive, selective, and stable. The performance of the sensors was assessed using a heart-on-a-chip system constructed from human embryonic stem cell-derived cardiomyocytes following exposure to a cardiotoxic drug, doxorubicin. The aptamer-based biosensor was capable of measuring trace amounts of CK-MB secreted by the cardiac organoids upon drug treatments in a dose-dependent manner, which was in agreement with the beating behavior and cell viability analyses. We believe that, our microfluidic electrochemical biosensor using aptamer-based capture mechanism will find widespread applications in integration with organ-on-a-chip platforms for in situ detection of biomarkers at low abundance and high sensitivity.

14.
Exp Physiol ; 100(6): 730-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25786668

RESUMEN

NEW FINDINGS: What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l-cycloserine reducing elevated ceramides in this muscle type. Potential mechanisms of ceramide-mediated insulin resistance involve activation of atypical protein kinase Cζ/λ and protein phosphatase 2A; however, neither of these was altered in muscles of JCR:LA-cp obese rats. Our results suggest a key role for ceramide in the development of insulin resistance in the JCR:LA-cp obese rat, while supporting serine palmitoyl transferase-1 inhibition as a novel target for treatment of obesity-associated insulin resistance.


Asunto(s)
Ceramidas/metabolismo , Resistencia a la Insulina , Fibras Musculares de Contracción Lenta/metabolismo , Obesidad/metabolismo , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Cicloserina/farmacología , Modelos Animales de Enfermedad , Metabolismo Energético , Inhibidores Enzimáticos/farmacología , Insulina/sangre , Isoenzimas/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Obesidad/sangre , Obesidad/fisiopatología , Fosforilación , Proteína Quinasa C/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Ratas , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/metabolismo , Transducción de Señal , Factores de Tiempo
15.
J Pharmacol Exp Ther ; 349(3): 487-96, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24700885

RESUMEN

There is a growing need to understand the underlying mechanisms involved in the progression of cardiovascular disease during obesity and diabetes. Although inhibition of fatty acid oxidation has been proposed as a novel approach to treat ischemic heart disease and heart failure, reduced muscle fatty acid oxidation rates may contribute to the development of obesity-associated insulin resistance. Our aim was to determine whether treatment with the antianginal agent trimetazidine, which inhibits fatty acid oxidation in the heart secondary to inhibition of 3-ketoacyl-CoA thiolase (3-KAT), may have off-target effects on glycemic control in obesity. We fed C57BL/6NCrl mice a high-fat diet (HFD) for 10 weeks before a 22-day treatment with the 3-KAT inhibitor trimetazidine (15 mg/kg per day). Insulin resistance was assessed via glucose/insulin tolerance testing, and lipid metabolite content was assessed in gastrocnemius muscle. Trimetazidine-treatment led to a mild shift in substrate preference toward carbohydrates as an oxidative fuel source in obese mice, evidenced by an increase in the respiratory exchange ratio. This shift in metabolism was accompanied by an accumulation of long-chain acyl-CoA and a trend to an increase in triacylglycerol content in gastrocnemius muscle, but did not exacerbate HFD-induced insulin resistance compared with control-treated mice. It is noteworthy that trimetazidine treatment reduced palmitate oxidation rates in the isolated working mouse heart and neonatal cardiomyocytes but not C2C12 skeletal myotubes. Our findings demonstrate that trimetazidine therapy does not adversely affect HFD-induced insulin resistance, suggesting that treatment with trimetazidine would not worsen glycemic control in obese patients with angina.


Asunto(s)
Acetil-CoA C-Aciltransferasa/antagonistas & inhibidores , Angina de Pecho/metabolismo , Resistencia a la Insulina , Obesidad/metabolismo , Trimetazidina/efectos adversos , Vasodilatadores/efectos adversos , Angina de Pecho/tratamiento farmacológico , Angina de Pecho/enzimología , Angina de Pecho/etiología , Animales , Células Cultivadas , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Obesidad/complicaciones , Obesidad/enzimología , Oxidación-Reducción , Ratas , Trimetazidina/administración & dosificación , Trimetazidina/uso terapéutico , Vasodilatadores/administración & dosificación , Vasodilatadores/uso terapéutico
16.
Am J Physiol Endocrinol Metab ; 305(3): E336-47, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23736540

RESUMEN

Carnitine palmitoyltransferase-1 (CPT-1) liver isoform, or CPT-1a, is implicated in CNS control of food intake. However, the exact brain nucleus site(s) in mediating this action of CPT-1a has not been identified. In this report, we assess the role of CPT-1a in hypothalamic ventromedial nucleus (VMN). We stereotaxically injected an adenoviral vector containing CPT-1a coding sequence into the VMN of rats to induce overexpression and activation of CPT-1a. The VMN-selective activation of CPT-1a induced an orexigenic effect, suggesting CPT-1a in the VMN is involved in the central control of feeding. Intracerebroventricular administration of etomoxir, a CPT-1 inhibitor, decreases food intake. Importantly, in the animals with VMN overexpression of a CPT-1a mutant that antagonizes the CPT-1 inhibition by etomoxir, the anorectic response to etomoxir was attenuated. This suggests that VMN is involved in mediating the anorectic effect of central inhibition of CPT-1a. In contrast, arcuate nucleus (Arc) overexpression of the mutant did not alter etomoxir-induced inhibition of food intake, suggesting that Arc CPT-1a does not play significant roles in this anorectic action. Furthermore, in the VMN, CPT-1a appears to act downstream of hypothalamic malonyl-CoA action of feeding. Finally, we show that in the VMN CPT-1 activity was altered in concert with fasting and refeeding states, supporting a physiological role of CPT-1a in mediating the control of feeding. All together, CPT-1a in the hypothalamic VMN appears to play an important role in central control of food intake. VMN-selective modulation of CPT-1a activity may therefore be a promising strategy in controlling food intake and maintaining normal body weight.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/fisiología , Ingestión de Alimentos/fisiología , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/fisiología , Acilcoenzima A/metabolismo , Animales , Depresores del Apetito/farmacología , Núcleo Arqueado del Hipotálamo/metabolismo , Western Blotting , Peso Corporal/fisiología , Carnitina/análogos & derivados , Carnitina/metabolismo , Dependovirus , Activación Enzimática/efectos de los fármacos , Compuestos Epoxi/farmacología , Ayuno/fisiología , Vectores Genéticos , Hipoglucemiantes/farmacología , Inyecciones Intraventriculares , Masculino , Malonil Coenzima A/fisiología , Ratas , Ratas Sprague-Dawley
17.
Heliyon ; 9(7): e18243, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539315

RESUMEN

Cardiomyocytes can be readily derived from human induced pluripotent stem cell (hiPSC) lines, yet its efficacy varies across different batches of the same and different hiPSC lines. To unravel the inconsistencies of in vitro cardiac differentiation, we utilized single cell transcriptomics on hiPSCs undergoing cardiac differentiation and identified cardiac and extra-cardiac lineages throughout differentiation. We further identified APLNR as a surface marker for in vitro cardiac progenitors and immunomagnetically isolated them. Differentiation of isolated in vitro APLNR+ cardiac progenitors derived from multiple hiPSC lines resulted in predominantly cardiomyocytes accompanied with cardiac mesenchyme. Transcriptomic analysis of differentiating in vitro APLNR+ cardiac progenitors revealed transient expression of cardiac progenitor markers before further commitment into cardiomyocyte and cardiac mesenchyme. Analysis of in vivo human and mouse embryo single cell transcriptomic datasets have identified APLNR expression in early cardiac progenitors of multiple lineages. This platform enables generation of in vitro cardiac progenitors from multiple hiPSC lines without genetic manipulation, which has potential applications in studying cardiac development, disease modelling and cardiac regeneration.

18.
iScience ; 26(4): 106302, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950112

RESUMEN

Cardiac in vitro models have become increasingly obtainable and affordable with the optimization of human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) differentiation. However, these CMs are immature compared to their in vivo counterparts. Here we study the cellular phenotype of hPSC-CMs by comparing their single-cell gene expression and functional profiles in three engineered cardiac tissue configurations: human ventricular (hv) cardiac anisotropic sheet, cardiac tissue strip, and cardiac organoid chamber (hvCOC), with spontaneously aggregated 3D cardiac spheroids (CS) as control. The CM maturity was found to increase with increasing levels of complexity of the engineered tissues from CS to hvCOC. The contractile components are the first function to mature, followed by electrophysiology and oxidative metabolism. Notably, the 2D tissue constructs show a higher cellular organization whereas metabolic maturity preferentially increases in the 3D constructs. We conclude that the tissue engineering models resembling configurations of native tissues may be reliable for drug screening or disease modeling.

19.
Commun Biol ; 6(1): 969, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740059

RESUMEN

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Ventricular dysfunction and cardiac arrhythmias are well-documented complications in patients with repaired TOF. Whether intrinsic abnormalities exist in TOF cardiomyocytes is unknown. We establish human induced pluripotent stem cells (hiPSCs) from TOF patients with and without DiGeorge (DG) syndrome, the latter being the most commonly associated syndromal association of TOF. TOF-DG hiPSC-derived cardiomyocytes (hiPSC-CMs) show impaired ventricular specification, downregulated cardiac gene expression and upregulated neural gene expression. Transcriptomic profiling of the in vitro cardiac progenitors reveals early bifurcation, as marked by ectopic RGS13 expression, in the trajectory of TOF-DG-hiPSC cardiac differentiation. Functional assessments further reveal increased arrhythmogenicity in TOF-DG-hiPSC-CMs. These findings are found only in the TOF-DG but not TOF-with no DG (ND) patient-derived hiPSC-CMs and cardiac progenitors (CPs), which have implications on the worse clinical outcomes of TOF-DG patients.


Asunto(s)
Síndrome de DiGeorge , Células Madre Pluripotentes Inducidas , Proteínas RGS , Tetralogía de Fallot , Humanos , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/genética , Tetralogía de Fallot/complicaciones , Arritmias Cardíacas/etiología , Miocitos Cardíacos
20.
Biochim Biophys Acta ; 1813(7): 1333-50, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21256164

RESUMEN

Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid ß-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid ß-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid ß-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid ß-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Carbohidratos , Metabolismo Energético , Glucosa/metabolismo , Glucólisis , Corazón/fisiopatología , Humanos , Ratones , Daño por Reperfusión Miocárdica/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA