Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 3): 485-492, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630438

RESUMEN

Synchrotron light sources can provide the required spatial coherence, stability and control to support the development of advanced lithography at the extreme ultraviolet and soft X-ray wavelengths that are relevant to current and future fabricating technologies. Here an evaluation of the optical performance of the soft X-ray (SXR) beamline of the Australian Synchrotron (AS) and its suitability for developing interference lithography using radiation in the 91.8 eV (13.5 nm) to 300 eV (4.13 nm) range are presented. A comprehensive physical optics model of the APPLE-II undulator source and SXR beamline was constructed to simulate the properties of the illumination at the proposed location of a photomask, as a function of photon energy, collimation and monochromator parameters. The model is validated using a combination of experimental measurements of the photon intensity distribution of the undulator harmonics. It is shown that the undulator harmonics intensity ratio can be accurately measured using an imaging detector and controlled using beamline optics. Finally, the photomask geometric constraints and achievable performance for the limiting case of fully spatially coherent illumination are evaluated.

2.
J Synchrotron Radiat ; 30(Pt 4): 723-738, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343017

RESUMEN

The ability to utilize a hybrid-photon-counting detector to its full potential can significantly influence data quality, data collection speed, as well as development of elaborate data acquisition schemes. This paper facilitates the optimal use of EIGER2 detectors by providing theory and practical advice on (i) the relation between detector design, technical specifications and operating modes, (ii) the use of corrections and calibrations, and (iii) new acquisition features: a double-gating mode, 8-bit readout mode for increasing temporal resolution, and lines region-of-interest readout mode for frame rates up to 98 kHz. Examples of the implementation and application of EIGER2 at several synchrotron sources (ESRF, PETRA III/DESY, ELETTRA, AS/ANSTO) are presented: high accuracy of high-throughput data in serial crystallography using hard X-rays; suppressing higher harmonics of undulator radiation, improving peak shapes, increasing data collection speed in powder X-ray diffraction; faster ptychography scans; and cleaner and faster pump-and-probe experiments.


Asunto(s)
Fotones , Sincrotrones , Rayos X , Radiografía , Difracción de Rayos X
3.
Anal Chem ; 94(11): 4584-4593, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276040

RESUMEN

Synchrotron-based X-ray fluorescence microscopy (XFM) analysis is a powerful technique that can be used to visualize elemental distributions across a broad range of sample types. Compared to conventional mapping techniques such as laser ablation inductively coupled plasma mass spectrometry or benchtop XFM, synchrotron-based XFM provides faster and more sensitive analyses. However, access to synchrotron XFM beamlines is highly competitive, and as a result, these beamlines are often oversubscribed. Therefore, XFM experiments that require many large samples to be scanned can penalize beamline throughput. Our study was largely driven by the need to scan large gels (170 cm2) using XFM without decreasing beamline throughput. We describe a novel approach for acquiring two sets of XFM data using two fluorescence detectors in tandem; essentially performing two separate experiments simultaneously. We measured the effects of tandem scanning on beam quality by analyzing a range of contrasting samples downstream while simultaneously scanning different gel materials upstream. The upstream gels were thin (<200 µm) diffusive gradients in thin-film (DGT) binding gels. DGTs are passive samplers that are deployed in water, soil, and sediment to measure the concentration and distribution of potentially bioavailable nutrients and contaminants. When deployed on soil, DGTs are typically small (2.5 cm2), so we developed large DGTs (170 cm2), which can be used to provide extensive maps to visualize the diffusion of fertilizers in soil. Of the DGT gel materials tested (bis-acrylamide, polyacrylamide, and polyurethane), polyurethane gels were most suitable for XFM analysis, having favorable handling, drying, and analytical properties. This gel type enabled quantitative (>99%) transmittance with minimal (<3%) flux variation during raster scanning, whereas the other gels had a substantial effect on the beam focus. For the first time, we have (1) used XFM for mapping analytes in large DGTs and (2) developed a tandem probe analysis mode for synchrotron-based XFM, effectively doubling throughput. The novel tandem probe analysis mode described here is of broad applicability across many XFM beamlines as it could be used for future experiments where any uniform, highly transmissive sample could be analyzed upstream in the "background" of downstream samples.


Asunto(s)
Poliuretanos , Sincrotrones , Difusión , Geles , Suelo/química
4.
J Synchrotron Radiat ; 29(Pt 2): 480-487, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254312

RESUMEN

Over the last decade ptychography has progressed rapidly from a specialist ultramicroscopy technique into a mature method accessible to non-expert users. However, to improve scientific value ptychography data must reconstruct reliably, with high image quality and at no cost to other correlative methods. Presented here is the implementation of high-speed ptychography used at the Australian Synchrotron on the XFM beamline, which includes a free-run data collection mode where dead time is eliminated and the scan time is optimized. It is shown that free-run data collection is viable for fast and high-quality ptychography by demonstrating extremely high data rate acquisition covering areas up to 352 000 µm2 at up to 140 µm2 s-1, with 13× spatial resolution enhancement compared with the beam size. With these improvements, ptychography at velocities up to 250 µm s-1 is approaching speeds compatible with fast-scanning X-ray fluorescence microscopy. The combination of these methods provides morphological context for elemental and chemical information, enabling unique scientific outcomes.


Asunto(s)
Microscopía , Sincrotrones , Australia , Microscopía/métodos
5.
J Synchrotron Radiat ; 29(Pt 3): 602-614, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35510993

RESUMEN

Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations.


Asunto(s)
Glicéridos , Lípidos , Glicéridos/química , Proteínas de la Membrana/química , Viscosidad , Agua/química , Difracción de Rayos X
6.
J Synchrotron Radiat ; 27(Pt 5): 1447-1458, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876622

RESUMEN

The X-ray fluorescence microscopy (XFM) beamline is an in-vacuum undulator-based X-ray fluorescence (XRF) microprobe beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the 4-27 keV energy range, permitting K emission to Cd and L and M emission for all other heavier elements. With a practical low-energy detection cut-off of approximately 1.5 keV, low-Z detection is constrained to Si, with Al detectable under favourable circumstances. The beamline has two scanning stations: a Kirkpatrick-Baez mirror microprobe, which produces a focal spot of 2 µm × 2 µm FWHM, and a large-area scanning `milliprobe', which has the beam size defined by slits. Energy-dispersive detector systems include the Maia 384, Vortex-EM and Vortex-ME3 for XRF measurement, and the EIGER2 X 1 Mpixel array detector for scanning X-ray diffraction microscopy measurements. The beamline uses event-mode data acquisition that eliminates detector system time overheads, and motion control overheads are significantly reduced through the application of an efficient raster scanning algorithm. The minimal overheads, in conjunction with short dwell times per pixel, have allowed XFM to establish techniques such as full spectroscopic XANES fluorescence imaging, XRF tomography, fly scanning ptychography and high-definition XRF imaging over large areas. XFM provides diverse analysis capabilities in the fields of medicine, biology, geology, materials science and cultural heritage. This paper discusses the beamline status, scientific showcases and future upgrades.

7.
Opt Express ; 28(24): 36862-36872, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379770

RESUMEN

Dynamic coherent diffractive imaging (CDI) reveals the fine details of structural, chemical, and biological processes occurring at the nanoscale but imposes strict constraints on the object distribution and illumination. Ptychographic CDI relaxes these constraints by exploiting redundant information in data obtained from overlapping regions of an object, but its time resolution is inherently limited. We have extended ptychographic redundancy into the spatiotemporal domain in dynamic CDI, automatically identifying redundant information in time-series coherent diffraction data obtained from dynamic systems. Simulated synchrotron experiments show that high spatiotemporal resolution is achieved without a priori knowledge of the object or its dynamics.

8.
Opt Lett ; 41(2): 281-4, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26766694

RESUMEN

The focusing efficiency of conventional diffractive x-ray lenses is fundamentally limited due to their symmetric binary structures and the corresponding symmetry of their focusing and defocusing diffraction orders. Fresnel zone plates with asymmetric structure profiles can break this limitation; yet existing implementations compromise either on resolution, ease of use, or stability. We present a new way for the fabrication of such blazed lenses by patterning two complementary binary Fresnel zone plates on the front and back sides of the same membrane chip to provide a compact, inherently stable, single-chip device. The presented blazed double-sided zone plates with 200 nm smallest half-pitch provide up to 54.7% focusing efficiency at 6.2 keV, which is clearly beyond the value obtainable by their binary counterparts.

9.
Nature ; 467(7314): 436-9, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20864997

RESUMEN

X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research. Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify. Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging. As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.


Asunto(s)
Huesos/citología , Huesos/diagnóstico por imagen , Microscopía/métodos , Nanotecnología/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Densidad Ósea , Fémur/citología , Fémur/diagnóstico por imagen , Imagenología Tridimensional/métodos , Ratones , Ratones Endogámicos C57BL
10.
Opt Express ; 23(2): 776-86, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25835837

RESUMEN

The fabrication of high aspect ratio metallic nanostructures is crucial for the production of efficient diffractive X-ray optics in the hard X-ray range. We present a novel method to increase their structure height via the double-sided patterning of the support membrane. In transmission, the two Fresnel zone plates on the two sides of the substrate will act as a single zone plate with added structure height. The presented double-sided zone plates with 30 nm smallest zone width offer up to 9.9% focusing efficiency at 9 keV, that results in a factor of two improvement over their previously demonstrated single-sided counterparts. The increase in efficiency paves the way to speed up X-ray microscopy measurements and allows the more efficient utilization of the flux in full-field X-ray microscopy.

11.
Biophys J ; 106(2): 459-66, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24461021

RESUMEN

The characterization of the structure of highly hierarchical biosamples such as collagen-based tissues at the scale of tens of nanometers is essential to correlate the tissue structure with its growth processes. Coherent x-ray Bragg ptychography is an innovative imaging technique that gives high resolution images of the ordered parts of such samples. Herein, we report how we used this method to image the collagen fibrillar ultrastructure of intact rat tail tendons. The images show ordered fibrils extending over 10-20 µm in length, with a quantifiable D-banding spacing variation of 0.2%. Occasional defects in the fibrils distribution have also been observed, likely indicating fibrillar fusion events.


Asunto(s)
Colágenos Fibrilares/metabolismo , Imagen Molecular/métodos , Tendones/metabolismo , Algoritmos , Animales , Procesamiento de Imagen Asistido por Computador , Ratas , Difracción de Rayos X , Rayos X
12.
J Synchrotron Radiat ; 21(Pt 3): 497-501, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24763638

RESUMEN

High-efficiency nanofocusing of hard X-rays using stacked multilevel Fresnel zone plates with a smallest zone width of 200 nm is demonstrated. The approach is to approximate the ideal parabolic lens profile with two-, three-, four- and six-level zone plates. By stacking binary and three-level zone plates with an additional binary zone plate, the number of levels in the optical transmission function was doubled, resulting in four- and six-level profiles, respectively. Efficiencies up to 53.7% focusing were experimentally obtained with 6.5 keV photons using a compact alignment apparatus based on piezoelectric actuators. The measurements have also been compared with numerical simulations to study the misalignment of the two zone plates.

13.
J Synchrotron Radiat ; 20(Pt 3): 397-404, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23592617

RESUMEN

A computing simulation routine to model any type of circularly symmetric diffractive X-ray element has been implemented. The wavefield transmitted beyond the diffractive structures is numerically computed by the angular spectrum propagation method to an arbitrary propagation distance. Cylindrical symmetry is exploited to reduce the computation and memory requirements while preserving the accuracy of the numerical calculation through a quasi-discrete Hankel transform algorithm, an approach described by Guizar-Sicairos & Gutierrez-Vega [J. Opt. Soc. Am. A, (2004), 21, 53-58]. In particular, the code has been used to investigate the requirements for the stacking of two high-resolution Fresnel zone plates with an outermost zone width of 20 nm.


Asunto(s)
Lentes , Modelos Teóricos , Radiografía/instrumentación , Difracción de Rayos X/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Dispersión de Radiación , Rayos X
14.
J Synchrotron Radiat ; 20(Pt 2): 293-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23412486

RESUMEN

A distributed fast-acquisition system for synchronized multi-technique experiments is presented, in which the collection of metadata and the asynchronous merging of large data volumes from multiple detectors are managed as part of the data collection process. This fast continuous scanning scheme, named FLYSCAN, enables measurement of microscopy data on a timescale of milliseconds per pixel. Proof-of-principle multi-technique experiments, namely scanning X-ray fluorescence spectrometry combined with absorption, differential phase contrast and dark-field imaging, have been performed on biological and geological samples.


Asunto(s)
Microscopía de Sonda de Barrido/métodos , Espectrometría por Rayos X/métodos , Sincrotrones , Animales , Diagnóstico por Imagen , Fósiles , Francia , Microscopía de Sonda de Barrido/instrumentación , Mariposas Nocturnas/ultraestructura , Sincrotrones/instrumentación
15.
Proc Natl Acad Sci U S A ; 107(2): 529-34, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20018650

RESUMEN

Recent advances in coherent x-ray diffractive imaging have paved the way to reliable and quantitative imaging of noncompact specimens at the nanometer scale. Introduced a year ago, an advanced implementation of ptychographic coherent diffractive imaging has removed much of the previous limitations regarding sample preparation and illumination conditions. Here, we apply this recent approach toward structure determination at the nanoscale to biological microscopy. We show that the projected electron density of unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiodurans can be derived from the reconstructed phase in a straightforward and reproducible way, with quantified and small errors. Thus, the approach may contribute in the future to the understanding of the highly disputed nucleoid structure of bacterial cells. In the present study, the estimated resolution for the cells was 85 nm (half-period length), whereas 50-nm resolution was demonstrated for lithographic test structures. With respect to the diameter of the pinhole used to illuminate the samples, a superresolution of about 15 was achieved for the cells and 30 for the test structures, respectively. These values should be assessed in view of the low dose applied on the order of approximately 1.3x10(5) Gy, and were shown to scale with photon fluence.


Asunto(s)
Deinococcus/ultraestructura , Microscopía/métodos , Difracción de Rayos X/métodos , Algoritmos , Liofilización , Holografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
16.
J Appl Crystallogr ; 55(Pt 3): 479-483, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35719300

RESUMEN

X-ray coherent diffractive imaging (CDI) techniques have been applied with widespread impact to study nanoscale material properties. New fast framing detectors may reveal dynamics that occur at millisecond timescales. This work demonstrates by simulation that kilohertz synchrotron CDI is possible, by making use of redundant information from static parts of the image field. Reconstruction ambiguities are strongly suppressed by applying a spatio-temporal constraint, obviating the need for slower methods of introducing diversity such as ptychography. The relationship between image fidelity and time resolution is investigated and shows that dynamics an order of magnitude faster can be reconstructed, compared with conventional CDI.

17.
IUCrJ ; 9(Pt 2): 231-242, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35371507

RESUMEN

Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis. Preferred orientation is regarded as a potential source of error in intensity-correlation experiments and complicates interpretation of the results. Here, the theory of preferred orientation in intensity-correlation techniques is developed, connecting it to the established theory of texture analysis. The preferred-orientation effect is found to scale with the number of crystalline domains in the beam, surpassing the nanostructural signal when the number of domains becomes large. Experimental demonstrations are presented of the orientation-dominant and nanostructure-dominant cases using PADF analysis. The results show that even minor deviations from uniform orientation produce the strongest angular correlation signals when the number of crystalline domains in the beam is large.

18.
Opt Express ; 19(1): 175-84, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21263555

RESUMEN

X-ray microscopy based on Fresnel zone plates is a powerful technique for sub-100 nm resolution imaging of biological and inorganic materials. Here, we report on the modeling, fabrication and characterization of zone-doubled Fresnel zone plates for the multi-keV regime (4-12 keV). We demonstrate unprecedented spatial resolution by resolving 15 nm lines and spaces in scanning transmission X-ray microscopy, and focusing diffraction efficiencies of 7.5% at 6.2 keV photon energy. These developments represent a significant step towards 10 nm spatial resolution for hard X-ray energies of up to 12 keV.


Asunto(s)
Microscopía Electrónica de Transmisión de Rastreo/instrumentación , Microscopía/instrumentación , Difracción de Rayos X/instrumentación , Diseño de Equipo , Lentes , Microscopía/métodos , Microscopía Electrónica de Transmisión de Rastreo/métodos , Dispositivos Ópticos , Fenómenos Ópticos , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
19.
Opt Express ; 19(22): 21333-44, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22108984

RESUMEN

We have employed ptychographic coherent diffractive imaging to completely characterize the focal spot wavefield and wavefront aberrations of a high-resolution diffractive X-ray lens. The ptychographic data from a strongly scattering object was acquired using the radiation cone emanating from a coherently illuminated Fresnel zone plate at a photon energy of 6.2 keV. Reconstructed images of the object were retrieved with a spatial resolution of 8 nm by combining the difference-map phase retrieval algorithm with a non-linear optimization refinement. By numerically propagating the reconstructed illumination function, we have obtained the X-ray wavefield profile of the 23 nm round focus of the Fresnel zone plate (outermost zone width, Δr = 20 nm) as well as the X-ray wavefront at the exit pupil of the lens. The measurements of the wavefront aberrations were repeatable to within a root mean square error of 0.006 waves, and we demonstrate that they can be related to manufacturing aspects of the diffractive optical element and to errors on the incident X-ray wavefront introduced by the upstream beamline optics.

20.
Opt Express ; 18(22): 23420-7, 2010 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21164684

RESUMEN

We have used coherent X-ray diffraction experiments to characterize both the 1-D and 2-D foci produced by nanofocusing Kirkpatrick-Baez (K-B) mirrors, and we find agreement. Algorithms related to ptychography were used to obtain a 3-D reconstruction of a focused hard X-ray beam waist, using data measured when the mirrors were not optimally aligned. Considerable astigmatism was evident in the reconstructed complex wavefield. Comparing the reconstructed wavefield for a single mirror with a geometrical projection of the wavefront errors expected from optical metrology data allowed us to diagnose a 40 µrad misalignment in the incident angle of the first mirror, which had occurred during the experiment. Good agreement between the reconstructed wavefront obtained from the X-ray data and off-line metrology data obtained with visible light demonstrates the usefulness of the technique as a metrology and alignment tool for nanofocusing X-ray optics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA