Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 41(13): 2990-2999, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33589514

RESUMEN

According to the organizational-activational hypothesis, the organizational effects of testosterone during (prenatal) brain development moderate the activational effects of adult testosterone on behavior. Accumulating evidence supports the notion that adolescence is another period during which sex hormones organize the nervous system. Here we investigate how pubertal sex hormones moderate the activational effects of adult sex hormones on social cognition in humans. To do so, we recruited a sample of young men (n = 507; age, ∼19 years) from a longitudinal birth cohort and investigated whether testosterone exposure during adolescence (from 9 to 17 years of age) moderates the relation between current testosterone and brain response to faces in young adulthood, as assessed with functional magnetic resonance imaging (fMRI). Our results showed that the cumulative exposure to testosterone during adolescence moderated the relation between adult testosterone and both the mean fMRI response and functional connectivity (i.e., node strength). Specifically, in participants with low exposure to testosterone during puberty, we observed a positive relationship between current testosterone and the brain response to faces; this was not the case for participants with medium and high pubertal testosterone. Furthermore, we observed a stronger relationship between the brain response and current testosterone in parts of the angry-face network associated with (vs without) motion in the eye region of an observed (angry) face. We speculate that pubertal testosterone modulates the relationship between current testosterone and brain response to social cues carried by the eyes and signaling a potential threat.SIGNIFICANCE STATEMENT Accumulating evidence supports the organizational effects of pubertal testosterone, but the body of literature examining these effects on social cognition in humans is in its infancy. With a sample of young men from a longitudinal birth cohort, we showed that the cumulative exposure to testosterone during adolescence moderated the relation between adult testosterone and both the mean BOLD signal change and functional connectivity. Specifically, we observed a positive relationship between adult testosterone and the brain response to faces in participants with low exposure to testosterone during puberty, but not in participants with medium and high pubertal testosterone. Results of further analysis suggest that sensitivity to cues carried by the eyes might underlie the relationship between testosterone and brain response to faces, especially in the context of a potential threat.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Expresión Facial , Estimulación Luminosa/métodos , Pubertad/metabolismo , Testosterona/sangre , Adolescente , Estudios de Cohortes , Humanos , Estudios Longitudinales , Masculino , Maduración Sexual/fisiología , Adulto Joven
2.
Cereb Cortex ; 31(6): 2812-2821, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33429422

RESUMEN

Adolescence is a period of brain maturation that may involve a second wave of organizational effects of sex steroids on the brain. Rodent studies suggest that, overall, organizational effects of gonadal steroid hormones decrease from the prenatal/perinatal period to adulthood. Here we used multimodal magnetic resonance imaging to investigate whether 1) testosterone exposure during adolescence (9-17 years) correlates with the structure of cerebral cortex in young men (n = 216, 19 years of age); 2) this relationship is modulated by the timing of testosterone surge during puberty. Our results showed that pubertal testosterone correlates with structural properties of the cerebral cortex, as captured by principal component analysis of T1 and T2 relaxation times, myelin water fraction, magnetization transfer ratio, fractional anisotropy and mean diffusivity. Many of the correlations between pubertal testosterone and the cortical structure were stronger in individuals with earlier (vs. later) testosterone surge. We also demonstrated that the strength of the relationship between pubertal testosterone and cortical structure across the cerebral cortex varies as a function of inter-regional profiles of gene expression specific to dendrites, axonal cytoskeleton, and myelin. This finding suggests that the cellular substrate underlying the relationships between pubertal testosterone and cerebral cortex involves both dendritic arbor and axon.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Pubertad/sangre , Testosterona/sangre , Adolescente , Niño , Humanos , Estudios Longitudinales , Masculino , Análisis de Componente Principal
4.
Transl Psychiatry ; 12(1): 233, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668078

RESUMEN

Social cognitive impairments are core features of schizophrenia spectrum disorders (SSD) and are associated with greater functional impairment and decreased quality of life. Metabolic disturbances have been related to greater impairment in general neurocognition, but their relationship to social cognition has not been previously reported. In this study, metabolic measures and social cognition were assessed in 245 participants with SSD and 165 healthy comparison subjects (HC), excluding those with hemoglobin A1c (HbA1c) > 6.5%. Tasks assessed emotion processing, theory of mind, and social perception. Functional connectivity within and between social cognitive networks was measured during a naturalistic social task. Among SSD, a significant inverse relationship was found between social cognition and cumulative metabolic burden (ß = -0.38, p < 0.001) and HbA1c (ß = -0.37, p < 0.001). The relationship between social cognition and HbA1c was robust across domains and measures of social cognition and after accounting for age, sex, race, non-social neurocognition, hospitalization, and treatment with different antipsychotic medications. Negative connectivity between affect sharing and motor resonance networks was a partial mediator of this relationship across SSD and HC groups (ß = -0.05, p = 0.008). There was a group x HbA1c effect indicating that SSD participants were more adversely affected by increasing HbA1c. Thus, we provide the first report of a robust relationship in SSD between social cognition and abnormal glucose metabolism. If replicated and found to be causal, insulin sensitivity and blood glucose may present as promising targets for improving social cognition, functional outcomes, and quality of life in SSD.


Asunto(s)
Esquizofrenia , Cognición , Hemoglobina Glucada , Humanos , Calidad de Vida , Esquizofrenia/complicaciones , Cognición Social , Percepción Social
5.
PLoS One ; 9(9): e108838, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25268961

RESUMEN

PURPOSE: Pubertal dynamics plays an important role in physical and psychological development of children and adolescents. We aim to provide reference ranges of plasma testosterone in a large longitudinal sample. Furthermore, we describe a measure of testosterone trajectories during adolescence that can be used in future investigations of development. METHODS: We carried out longitudinal measurements of plasma testosterone in 2,216 samples obtained from 513 males (9 to 17 years of age) from the Avon Longitudinal Study of Parents and Children. We used integration of a model fitted to each participant's testosterone trajectory to calculate a measure of average exposure to testosterone over adolescence. We pooled these data with corresponding values reported in the literature to provide a reference range of testosterone levels in males between the ages of 6 and 19 years. RESULTS: The average values of total testosterone in the ALSPAC sample range from 0.82 nmol/L (Standard Deviation [SD]: 0.09) at 9 years of age to 16.5 (SD: 2.65) nmol/L at 17 years of age; these values are congruent with other reports in the literature. The average exposure to testosterone is associated with different features of testosterone trajectories such as Peak Testosterone Change, Age at Peak Testosterone Change, and Testosterone at 17 years of age as well as the timing of the growth spurt during puberty. CONCLUSIONS: The average exposure to testosterone is a useful measure for future investigations using testosterone trajectories to examine pubertal dynamics.


Asunto(s)
Testosterona/sangre , Adolescente , Factores de Edad , Niño , Ritmo Circadiano , Humanos , Estudios Longitudinales , Masculino , Valores de Referencia , Globulina de Unión a Hormona Sexual/análisis , Testosterona/normas , Adulto Joven
6.
Int J Dev Sci ; 7(2): 105-116, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26052478

RESUMEN

It is important to account for timing of puberty when studying the adolescent brain and cognition. The use of classical methods for assessing pubertal status may not be feasible in some studies, especially in male adolescents. Using data from a sample of 478 males from a longitudinal birth cohort, we describe the calculations of three independent height-based markers of pubertal timing: Age at Peak Height Velocity (APHV), Height Difference in Standard Deviations (HDSDS), and Percent Achieved of Adult Stature (PAAS). These markers correlate well with each other. In a separate cross-sectional study, we show that the PAAS marker correlates well with testosterone levels and self-reported pubertal-stage scores. We conclude by discussing key considerations for investigators when drawing upon these methods of assessing pubertal timing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA