Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 191: 106658, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643850

RESUMEN

Pseudomonas aeruginosa is often identified as the causative agent in nosocomial infections. Their adapted resistance makes them strong towards antimicrobial treatments. They protect and empower their survival behind strong biofilm architecture that works as their armor toward antimicrobial therapy. Additionally, P. aeruginosa generates virulence factors, contributing to chronic infection and recalcitrant phenotypic characteristics. The current study utilizes the benevolence of nanotechnology to develop an alternate technique to control the spreading of P. aeruginosa by limiting its biofilm and virulence development. This study used a natural compound, tetramethylpyrazine, to generate gold nanoparticles. Tetramethylpyrazine-gold nanoparticles (Tet-AuNPs) were presented in spherical shapes, with an average size of 168 ± 52.49 nm and a zeta potential of -12.22 ± 2.06 mV. The minimum inhibition concentration (MIC) of Tet-AuNPs that proved more than 90 % effective in inhibiting P. aeruginosa was 256 µg/mL. Additionally, it also shows antibacterial activities against Staphylococcus aureus (MIC, 256 µg/mL), Streptococcus mutans (MIC, 128 µg/mL), Klebsiella pneumoniae (MIC, 128 µg/mL), Listeria monocytogenes (MIC, 256 µg/mL), and Escherichia coli (MIC, 256 µg/mL). The sub-MIC values of Tet-AuNPs significantly inhibited the early-stage biofilm formation of P. aeruginosa. Moreover, this concentration strongly affected hemolysis, protease activity, and different forms of motilities in P. aeruginosa. Additionally, Tet-AuNPs destroyed the well-established mature biofilm of P. aeruginosa. The expression of genes linked with the biofilm formation and virulence in P. aeruginosa treated with sub-MIC doses of Tet-AuNPs was shown to be significantly suppressed. Gene expression studies support biofilm- and virulence-suppressing effects of Tet-AuNPs at the phenotypic level.


Asunto(s)
Antibacterianos , Biopelículas , Oro , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Pirazinas , Factores de Virulencia , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Oro/química , Oro/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Factores de Virulencia/genética , Antibacterianos/farmacología , Antibacterianos/química , Pirazinas/farmacología , Nanopartículas del Metal/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética
2.
Microb Pathog ; 188: 106546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278457

RESUMEN

Nanomaterials derived from seaweed have developed as an alternative option for fighting infections caused by biofilm-forming microbial pathogens. This research aimed to discover potential seaweed-derived nanomaterials with antimicrobial and antibiofilm action against bacterial and fungal pathogens. Among seven algal species, the extract from Eisenia bicyclis inhibited biofilms of Klebsiella pneumoniae, Staphylococcus aureus, and Listeria monocytogenes most effectively at sub-MIC levels. As a result, in the present study, E. bicyclis was chosen as a prospective seaweed for producing E. bicyclis-gold nanoparticles (EB-AuNPs). Furthermore, the mass spectra of E. bicyclis reveal the presence of a number of potentially beneficial chemicals. The polyhedral shape of the synthesized EB-AuNP with a size value of 154.74 ± 33.46 nm was extensively described. The lowest inhibitory concentration of EB-AuNPs against bacterial pathogens (e.g., L.monocytogenes, S. aureus, Pseudomonas aeruginosa, and K. pneumoniae) and fungal pathogens (Candida albicans) ranges from 512 to >2048 µg/mL. Sub-MIC of EB-AuNPs reduces biofilm formation in P. aeruginosa, K. pneumoniae, L. monocytogenes, and S. aureus by 57.22 %, 58.60 %, 33.80 %, and 91.13 %, respectively. EB-AuNPs eliminate the mature biofilm of K. pneumoniae at > MIC, MIC, and sub-MIC concentrations. Furthermore, EB-AuNPs at the sub-MIC level suppress key virulence factors generated by P. aeruginosa, including motility, protease activity, pyoverdine, and pyocyanin, whereas it also suppresses the production of staphyloxanthin virulence factor from S. aureus. The current research reveals that seaweed extracts and a biocompatible seaweed-AuNP have substantial antibacterial, antibiofilm, and antivirulence actions against bacterial and fungal pathogens.


Asunto(s)
Antiinfecciosos , Algas Comestibles , Kelp , Nanopartículas del Metal , Algas Marinas , Oro/farmacología , Oro/química , Staphylococcus aureus , Estudios Prospectivos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Biopelículas , Algas Marinas/química , Factores de Virulencia , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
3.
Appl Microbiol Biotechnol ; 108(1): 203, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349556

RESUMEN

The rapidly rising antimicrobial resistance (AMR) in pathogenic bacteria has become one of the most serious public health challenges, with a high death rate. Most pathogenic bacteria have been recognized as a source of AMR and a primary barrier to antimicrobial treatment failure due to the development of biofilms and the production of virulence factors. In this work, nanotechnology was employed as a substitute method to control the formation of biofilms and attenuate virulence features in Pseudomonas aeruginosa and Staphylococcus aureus. We synthesized biocompatible gold nanoparticles from marine-derived laminarin as potential biofilm and virulence treatments. Laminarin-gold nanoparticles (Lam-AuNPs) have been identified as spherical, 49.84 ± 7.32 nm in size and - 26.49 ± 1.29 mV zeta potential. The MIC value of Lam-AuNPs against several drug-resistant microbial pathogens varied from 2 to 1024 µg/mL in both standard and host-mimicking media. Sub-MIC values of Lam-AuNPs were reported to effectively reduce the production of P. aeruginosa and S. aureus biofilms in both standard and host-mimicking growth media. Furthermore, the sub-MIC of Lam-AuNPs strongly reduced hemolysis, pyocyanin, pyoverdine, protease, and several forms of flagellar and pili-mediated motility in P. aeruginosa. Lam-AuNPs also inhibited S. aureus hemolysis and the production of amyloid fibrils. The Lam-AuNPs strongly dispersed the preformed mature biofilm of these pathogens in a dose-dependent manner. The Lam-AuNPs would be considered an alternative antibiofilm and antivirulence agent to control P. aeruginosa and S. aureus infections. KEY POINTS: • Lam-AuNPs were biosynthesized to control biofilm and virulence. • Lam-AuNPs show effective biofilm inhibition in standard and host-mimicking media. • Lam-AuNPs suppress various virulence factors of P. aeruginosa and S. aureus.


Asunto(s)
Antiinfecciosos , Glucanos , Nanopartículas del Metal , Humanos , Oro/farmacología , Hemólisis , Staphylococcus aureus , Biopelículas , Factores de Virulencia
4.
Appl Microbiol Biotechnol ; 108(1): 3, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38159120

RESUMEN

Acinetobacter baumannii is a Gram-negative opportunistic zoonotic pathogenic bacterium that causes nosocomial infections ranging from minor to life-threatening. The clinical importance of this zoonotic pathogen is rapidly increasing due to the development of multiple resistance mechanisms and the synthesis of numerous virulence factors. Although no flagellum-mediated motility exists, it may move through twitching or surface-associated motility. Twitching motility is a coordinated multicellular movement caused by the extension, attachment, and retraction of type IV pili, which are involved in surface adherence and biofilm formation. Surface-associated motility is a kind of movement that does not need appendages and is most likely driven by the release of extra polymeric molecules. This kind of motility is linked to the production of 1,3-diaminopropane, lipooligosaccharide formation, natural competence, and efflux pump proteins. Since A. baumannii's virulence qualities are directly tied to motility, it is possible that its motility may be used as a specialized preventative or therapeutic measure. The current review detailed the signaling mechanism and involvement of various proteins in controlling A. baumannii motility. As a result, we have thoroughly addressed the role of natural and synthetic compounds that impede A. baumannii motility, as well as the underlying action mechanisms. Understanding the regulatory mechanisms behind A. baumannii's motility features will aid in the development of therapeutic drugs to control its infection. KEY POINTS: • Acinetobacter baumannii exhibits multiple resistance mechanisms. • A. baumannii can move owing to twitching and surface-associated motility. • Natural and synthetic compounds can attenuate A. baumannii motility.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/metabolismo , Virulencia , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/metabolismo , Biopelículas , Antibacterianos/metabolismo
5.
Crit Rev Microbiol ; : 1-29, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968960

RESUMEN

Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.

6.
Crit Rev Microbiol ; 49(5): 628-657, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35997756

RESUMEN

Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.


Asunto(s)
Bacteriocinas , Nisina , Nisina/farmacología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Genes Bacterianos
7.
Microb Pathog ; 185: 106416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866550

RESUMEN

The co-isolation of Staphylococcus aureus and Candida albicans from host tissues and organs and their in vitro and in vivo interaction studies suggest a synergistic relationship in forming polymicrobial biofilms. In particular, during polymicrobial biofilm formation, S. aureus becomes coated in the extracellular matrix secreted by C. albicans, leading to enhanced resistance to antibiotics. Accordingly, understanding the interactions between S. aureus and C. albicans in polymicrobial biofilms is of utmost importance in establishing treatment strategies for polymicrobial infections. As an alternate technique, nanoparticles were used in this investigation to suppress polymicrobial biofilm. The current study aims to manufacture gold nanoparticles (AuNPs) using phloroglucinol (PG), a natural chemical, and test their inhibitory capabilities against S. aureus and C. albicans biofilms in standard and host-mimicking media (like saliva and sputum). PG-AuNPs have a spherical form with an average size of 46.71 ± 6.40 nm. The minimum inhibitory concentration (MIC) values differed when PG-AuNPs were evaluated in the standard and host-mimicking artificial media. The MIC of PG-AuNPs against S. aureus and C. albicans was 2048 µg/mL in both the standard and artificial sputum media. However, the MIC in saliva was only 128 µg/mL. The initial stage polymicrobial biofilm of S. aureus and C. albicans was dramatically decreased at the sub-MIC of PG-AuNPs in both standard and host-mimicking media. S. aureus and C. albicans mature polymicrobial biofilms were more effectively eliminated by MIC and sub-MIC of PG-AuNPs. This study indicates that PG-AuNPs have the ability to limit the formation of polymicrobial biofilms caused by bacterial and fungal diseases.


Asunto(s)
Candida albicans , Nanopartículas del Metal , Oro/farmacología , Staphylococcus aureus , Biopelículas
8.
Cell Commun Signal ; 21(1): 259, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749602

RESUMEN

Cyclic bis-(3', 5')-dimeric guanosine monophosphate (c-di-GMP) is ubiquitous in many bacterial species, where it functions as a nucleotide-based secondary messenger and is a vital regulator of numerous biological processes. Due to its ubiquity, most bacterial species possess a wide range of downstream receptors that has a binding affinity to c-di-GMP and elicit output responses. In eukaryotes, several enzymes and riboswitches operate as receptors that interact with c-di-GMP and transduce cellular or environmental signals. This review examines the functional variety of receptors in prokaryotic and eukaryotic systems that exhibit distinct biological responses after interacting with c-di-GMP. Evolutionary relationships and similarities in distance among the c-di-GMP receptors in various bacterial species were evaluated to understand their specificities. Furthermore, residues of receptors involved in c-di-GMP binding are summarized. This review facilitates the understanding of how distinct receptors from different origins bind c-di-GMP equally well, yet fulfill diverse biological roles at the interspecies, intraspecies, and interkingdom levels. Furthermore, it also highlights c-di-GMP receptors as potential therapeutic targets, particularly those found in pathogenic microorganisms. Video Abstract.


Asunto(s)
GMP Cíclico , Eucariontes , Fosforilación , Polímeros
9.
Appl Microbiol Biotechnol ; 107(4): 1019-1038, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633626

RESUMEN

Pseudmonas aeruginosa is a Gram-negative bacterium known to be ubiquitous and recognized as one of the leading causes of infections such as respiratory, urinary tract, burns, cystic fibrosis, and in immunocompromised individuals. Failure of antimicrobial therapy has been documented to be attributable due to the development of various resistance mechanisms, with a proclivity to develop additional resistance mechanisms rapidly. P. aeruginosa virulence attenuation is an alternate technique for disrupting pathogenesis without impacting growth. The iron-scavenging siderophores (pyoverdine and pyochelin) generated by P. aeruginosa have various properties like scavenging iron, biofilm formation, quorum sensing, increasing virulence, and toxicity to the host. As a result, developing an antivirulence strategy, specifically inhibiting the P. aeruginosa siderophore, has been a promising therapeutic option to limit their infection. Several natural, synthetic compounds and nanoparticles have been identified as potent inhibitors of siderophore production/biosynthesis, function, and transport system. The current review discussed pyoverdine and pyochelin's synthesis and transport system in P. aeruginosa. Furthermore, it is also focused on the role of several natural and synthetic compounds in reducing P. aeruginosa virulence by inhibiting siderophore synthesis, function, and transport. The underlying mechanism involved in inhibiting the siderophore by natural and synthetic compounds has also been explained. KEY POINTS: • Pseudomonas aeruginosa is an opportunistic pathogen linked to chronic respiratory, urinary tract, and burns infections, as well as cystic fibrosis and immunocompromised patients. • P. aeruginosa produces two virulent siderophores forms: pyoverdine and pyochelin, which help it to survive in iron-deficient environments. • The inhibition of siderophore production, transport, and activity using natural and synthesized drugs has been described as a potential strategy for controlling P. aeruginosa infection.


Asunto(s)
Fibrosis Quística , Sideróforos , Humanos , Pseudomonas aeruginosa , Virulencia , Fibrosis Quística/microbiología , Hierro
10.
Mar Drugs ; 21(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36827164

RESUMEN

The polymicrobial proliferation and development of complex biofilm morphologies by bacterial and fungal pathogens in the host are some of the key factors contributing to the failure of antimicrobial treatments. The polymicrobial interaction of Candida albicans and some bacterial species has been extensively studied in both in vitro and in vivo model systems. Alternative strategies for disrupting polymicrobial interaction and biofilm formation are constantly needed. Among several alternative strategies, the use of nanoparticles synthesized using a natural product in the treatment of microbial infection has been considered a promising approach. The current study aimed to synthesize gold nanoparticles (AuNPs) using a natural product, fucoidan, and to test their efficacy against mono and duo combinations of fungal (Candida albicans) and bacterial (Staphylococcus aureus/Streptococcus mutans) biofilms. Several methods were used to characterize and study Fu-AuNPs, including UV-vis absorption spectroscopy, FTIR, FE-TEM, EDS, DLS, zeta potential, and XRD. The concentration-dependent inhibition of early-stage biofilms and the eradication of mature biofilms of single species of C. albicans, S. aureus, and S. mutans have been observed. Early biofilms of a dual-species combination of C. albicans and S. aureus/S. mutans were also suppressed at an increasing concentration of Fu-AuNPs. Furthermore, Fu-AuNPs significantly eradicated the established mature biofilm of mixed species. The treatment method proposed in this study, which involves the use of marine-bioinspired nanoparticles, is a promising and biocompatible agent for preventing the growth of polymicrobial biofilms of bacterial and fungal pathogens.


Asunto(s)
Candida albicans , Nanopartículas del Metal , Oro , Staphylococcus aureus , Streptococcus mutans/fisiología , Biopelículas
11.
Int Microbiol ; 25(1): 47-59, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34224048

RESUMEN

Foot-and-mouth disease (FMD) is highly infectious, limits live animal trade, and affects ranchers owing to the loss of animal yield. The present study was designed to perform vaccine matching for field FMD virus isolates from clinically diseased cattle and assess the antigenic properties of the field isolates against the current vaccine strains used for vaccine production at the National Veterinary Institute, Ethiopia. Both sequencing and reverse transcription-polymerase chain reactions were used for distinguishing between the viral strains. To evaluate the serological relationship of the vaccine strain with these field isolates (r1 value), in vitro cross-neutralization was performed using ETH/6/2000 and ETH/38/2005 antisera. Infectious field FMD viral samples represented serotypes A and O. Sequence analysis showed that serotype A VP1/1D possessed amino acid variability at positions 28 and 42 to 48, 138, 141, 142, 148, 156, 173, and 197 compared with the ETH/6/2000 vaccine strain, whereas serotype O possessed amino acid variability at positions 45, 48, 138, 139, 140, 141, and 197 compared with the ETH/38/2005 vaccine strain. Based on the one-dimensional virus neutralization test, serotypes A and O demonstrated antigenic matching of up to 13/17 (76.47%) with the vaccine strain, except for the isolates ETH/40/2018, ETH/48/2018, ETH/55/2018, and ETH/61/2018, which had r-values less than 0.3. Therefore, the currently used vaccine strains ETH/38/2005 for serotype O and ETH/6/2000 for serotype A protected against all and most field viruses characterized as serotypes O and A, respectively, and amino acid residue variation was observed in different FMD virus B-C loops, G-H loops, and C-termini of VP1 at sites 1 and 3 in both serotypes.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Variación Antigénica , Bovinos , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/genética , Filogenia , Serogrupo
12.
Appl Microbiol Biotechnol ; 106(18): 5835-5862, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35989330

RESUMEN

Several studies have demonstrated that when exposed to physical, chemical, and biological stresses in the environment, many bacteria (Gram-positive and Gram-negative) change their morphology from a normal cell to a filamentous shape. The formation of filamentous morphology is one of the survival strategies against environmental stress and protection against phagocytosis or protist predators. Numerous pathogenic bacteria have shown filamentous morphologies when examined in vivo or in vitro. During infection, certain pathogenic bacteria adopt a filamentous shape inside the cell to avoid phagocytosis by immune cells. Filamentous morphology has also been seen in biofilms formed on biotic or abiotic surfaces by certain bacteria. As a result, in addition to protecting against phagocytosis by immune cells or predators, the filamentous shape aids in biofilm adhesion or colonization to biotic or abiotic surfaces. Furthermore, these filamentous morphologies of bacterial pathogens lead to antimicrobial drug resistance. Clinically, filamentous morphology has become one of the most serious challenges in treating bacterial infection. The current review went into great detail about the various factors involved in the change of filamentous morphology and the underlying mechanisms. In addition, the review discussed a control strategy for suppressing filamentous morphology in order to combat bacterial infections. Understanding the mechanism underlying the filamentous morphology induced by various environmental conditions will aid in drug development and lessen the virulence of bacterial pathogens. KEY POINTS: • The bacterial filamentation morphology is one of the survival mechanisms against several environmental stress conditions and protection from phagocytosis by host cells and protist predators. • The filamentous morphologies in bacterial pathogens contribute to enhanced biofilm formation, which develops resistance properties against antimicrobial drugs. • Filamentous morphology has become one of the major hurdles in treating bacterial infection, hence controlling strategies employed for inhibiting the filamentation morphology from combating bacterial infections.


Asunto(s)
Bacterias , Infecciones Bacterianas , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/prevención & control , Biopelículas , Humanos , Virulencia
13.
Mar Drugs ; 20(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36005529

RESUMEN

The increased interest in nanomedicine and its applicability for a wide range of biological functions demands the search for raw materials to create nanomaterials. Recent trends have focused on the use of green chemistry to synthesize metal and metal-oxide nanoparticles. Bioactive chemicals have been found in a variety of marine organisms, including invertebrates, marine mammals, fish, algae, plankton, fungi, and bacteria. These marine-derived active chemicals have been widely used for various biological properties. Marine-derived materials, either whole extracts or pure components, are employed in the synthesis of nanoparticles due to their ease of availability, low cost of production, biocompatibility, and low cytotoxicity toward eukaryotic cells. These marine-derived nanomaterials have been employed to treat infectious diseases caused by bacteria, fungi, and viruses as well as treat non-infectious diseases, such as tumors, cancer, inflammatory responses, and diabetes, and support wound healing. Furthermore, several polymeric materials derived from the marine, such as chitosan and alginate, are exploited as nanocarriers in drug delivery. Moreover, a variety of pure bioactive compounds have been loaded onto polymeric nanocarriers and employed to treat infectious and non-infectious diseases. The current review is focused on a thorough overview of nanoparticle synthesis and its biological applications made from their entire extracts or pure chemicals derived from marine sources.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas , Neoplasias , Enfermedades no Transmisibles , Animales , Bacterias , Quitosano/química , Sistemas de Liberación de Medicamentos , Hongos , Mamíferos , Nanopartículas del Metal/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Enfermedades no Transmisibles/tratamiento farmacológico , Preparaciones Farmacéuticas , Polímeros/uso terapéutico
14.
Mar Drugs ; 20(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736187

RESUMEN

Phlorotannins are a group of phenolic secondary metabolites isolated from a variety of brown algal species belonging to the Fucaceae, Sargassaceae, and Alariaceae families. The isolation of phlorotannins from various algal species has received a lot of interest owing to the fact that they have a range of biological features and are very biocompatible in their applications. Phlorotannins have a wide range of therapeutic biological actions, including antimicrobial, antidiabetic, antioxidant, anticancer, anti-inflammatory, anti-adipogenesis, and numerous other biomedical applications. The current review has extensively addressed the application of phlorotannins, which have been extensively investigated for the above-mentioned biological action and the underlying mechanism of action. Furthermore, the current review offers many ways to use phlorotannins to avoid certain downsides, such as low stability. This review article will assist the scientific community in investigating the greater biological significance of phlorotannins and developing innovative techniques for treating both infectious and non-infectious diseases in humans.


Asunto(s)
Phaeophyceae , Algas Marinas , Antioxidantes/farmacología , Humanos , Fenoles , Taninos/farmacología , Verduras
15.
Bioprocess Biosyst Eng ; 45(2): 279-295, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34727229

RESUMEN

Synthesized cerium oxide nanoparticles (S-CeO2 NPs) and 1%, 5% and 10% zirconium doped CeO2 (Zr-doped CeO2) NPs were fabricated using aqueous leaf extract of Pometia pinnata. The synthesized NPs were characterized using standard techniques which confirmed successful synthesis of NPs with particle size ranging from 12 to 23 nm and band gap energy of 2.54-2.66 eV. Photoantioxidant activities showed enhanced activities under visible light irradiation in comparison to the dark condition in the dose-dependent study. Biofilm inhibition studies showed ~ 73% biofilm inhibition of Staphylococcus aureus at 512 µg/mL for S-CeO2, whereas 10% Zr-doped CeO2 NPs showed biofilm inhibition of 52.7%. The bactericidal tests showed killing properties at 1024 µg/mL of S-CeO2 NPs and at 512 µg/mL of 1% Zr-doped CeO2. Reduced bactericidal activities were observed for 5% and 10% Zr-doped CeO2. These studies showed that the fabricated NPs have both good photoantioxidant and antibacterial properties.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Antibacterianos/farmacología , Biopelículas , Cerio/farmacología , Tamaño de la Partícula , Extractos Vegetales/farmacología , Staphylococcus aureus
16.
Crit Rev Microbiol ; 47(6): 699-727, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34003065

RESUMEN

Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.


Asunto(s)
Antiinfecciosos , Candida , Bacterias/genética , Biopelículas , Candida albicans
17.
Arch Microbiol ; 204(1): 5, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870749

RESUMEN

Vibrio cholerae and Vibrio vulnificus are critical foodborne pathogens that need to be intensively controlled for their infection due to the intake and distribution of seafood, especially raw oysters. For this reason, various methods have already been developed for the detection and enumeration of these bacteria. The most probable number (MPN)-PCR (polymerase chain reaction) method is commonly used with the selective-differential medium for the efficiency and convenience of cell enumeration. One of the most frequently used for detecting Vibrio spp. is thiosulfate-citrate-bile salts-sucrose (TCBS) agar. But this selective-differential medium can fail to distinguish between V. cholerae, V. vulnificus, and Vibrio alginolyticus. For this reason, the conventional MPN-PCR method with TCBS medium for the detection of Vibrio spp. has a problem with processing PCR two times. This study suggests a simple and minimized detection method using one-time PCR and non-NaCl Luria-Bertani (LB-0) medium culture. This detection method is based on the difference in salt requirement between V. cholerae and V. vulnificus. Employing the developed methodology, the simultaneous cell enumeration of V. cholerae and V. vulnificus can be possible at a low cost. Furthermore, this study proposes a new specific primer to detect virulence-related genes from V. cholerae and V. vulnificus. This advanced MPN-PCR method was verified using bioaccumulated pacific oysters (Crassostrea gigas) by V. cholerae and V. vulnificus.


Asunto(s)
Ostreidae , Vibrio cholerae , Vibrio parahaemolyticus , Vibrio vulnificus , Animales , Reacción en Cadena de la Polimerasa , Vibrio cholerae/genética , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética
18.
Appl Microbiol Biotechnol ; 105(9): 3717-3731, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33900427

RESUMEN

The formation of biofilms by bacterial pathogens and the presence of persister cells in biofilms have become major concerns in the health sector, owing to their antibiotic resistance and tolerance. The transformation of bacterial pathogens into persister cells, either stochastically or due to stressful environmental factors, results in recalcitrant and recurring infections. Here, we sought to prepare gold nanoparticles from naturally occurring caffeine and explore their inhibitory action against biofilm formation and persister cells. Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, field emission transmission electron microscopy, energy-dispersive X-ray diffraction, and dynamic light scattering were used to characterize the gold nanoparticles obtained from caffeine (Caff-AuNPs). The Caff-AuNPs were found to exhibit a number of properties, including the ability to prevent biofilm formation, disperse mature biofilms, and kill different types of persister of gram-positive (Staphylococcus aureus and Listeria monocytogenes) and gram-negative (Pseudomonas aeruginosa and Escherichia coli) pathogenic bacteria. Microscopic analysis of the aforementioned bacterial cells, treated with Caff-AuNPs, revealed the bactericidal effect of Caff-AuNPs, although the underlying mechanism remains unknown. Collectively, the Caff-AuNPs synthesized in this study may be used as potential drugs to combat chronic infections caused by biofilm-forming pathogenic bacteria. KEY POINTS: • Biofilm and persister cells are clinically relevant, as they either prolong or completely resist antibiotic treatments. • Caffeine is used in the green synthesis of Caff-AuNPs, which have antibacterial and antibiofilm properties. • Caff-AuNPs are effective against various pathogenic bacterial persister cells.


Asunto(s)
Oro , Nanopartículas del Metal , Antibacterianos/farmacología , Biopelículas , Cafeína/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
19.
Biofouling ; 37(6): 626-655, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34284656

RESUMEN

Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.


Asunto(s)
Candida albicans , Hifa , Biopelículas , Proteínas Fúngicas , Virulencia , Factores de Virulencia
20.
Mar Drugs ; 19(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34822472

RESUMEN

With the advancement of nanotechnology, several nanoparticles have been synthesized as antimicrobial agents by utilizing biologically derived materials. In most cases, the materials used for the synthesis of nanoparticles from natural sources are extracts. Natural extracts contain a wide range of bioactive components, making it difficult to pinpoint the exact component responsible for nanoparticle synthesis. Furthermore, the bioactive component present in the extract changes according to numerous environmental factors. As a result, the current work intended to synthesize gold (AuNPs) and zinc oxide (ZnONPs) nanoparticles using pure phloroglucinol (PG). The synthesized PG-AuNPs and PG-ZnONPs were characterized using a UV-Vis absorption spectrophotometer, FTIR, DLS, FE-TEM, zeta potential, EDS, and energy-dispersive X-ray diffraction. The characterized PG-AuNPs and PG-ZnONPs have been employed to combat the pathogenesis of Pseudomonas aeruginosa. P. aeruginosa is recognized as one of the most prevalent pathogens responsible for the common cause of nosocomial infection in humans. Antimicrobial resistance in P. aeruginosa has been linked to the development of recalcitrant phenotypic characteristics, such as biofilm, which has been identified as one of the major obstacles to antimicrobial therapy. Furthermore, P. aeruginosa generates various virulence factors that are a major cause of chronic infection. These PG-AuNPs and PG-ZnONPs significantly inhibit early stage biofilm and eradicate mature biofilm. Furthermore, these NPs reduce P. aeruginosa virulence factors such as pyoverdine, pyocyanin, protease, rhamnolipid, and hemolytic capabilities. In addition, these NPs significantly reduce P. aeruginosa swarming, swimming, and twitching motility. PG-AuNPs and PG-ZnONPs can be used as control agents for infections caused by the biofilm-forming human pathogenic bacterium P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Oro/farmacología , Extractos Vegetales/farmacología , Óxido de Zinc/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Oro/química , Humanos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Nanotecnología , Fitoterapia , Extractos Vegetales/química , Pseudomonas aeruginosa/efectos de los fármacos , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA