Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(13): 6088-6094, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37367179

RESUMEN

Twist engineering of van der Waals magnets has emerged as an outstanding platform for manipulating exotic magnetic states. However, the complicated form of spin interactions in the large moiré superlattice obstructs a concrete understanding of such spin systems. To tackle this problem, for the first time, we developed a generic ab initio spin Hamiltonian for twisted bilayer magnets. Our atomistic model reveals that strong AB sublattice symmetry breaking due to the twist introduces a promising route to realize the novel noncentrosymmetric magnetism. Several unprecedented features and phases are uncovered including the peculiar domain structure and skyrmion phase induced by noncentrosymmetricity. The diagram of those distinctive magnetic phases has been constructed, and the detailed nature of their transitions analyzed. Further, we established the topological band theory of moiré magnons relevant to each of these phases. By respecting the full lattice structure, our theory provides the characteristic features that can be detected in experiments.

2.
Adv Mater ; 36(15): e2310291, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38235929

RESUMEN

Spin-polarized bands in pristine and proximity-induced magnetic materials are promising building blocks for future devices. Conceptually new memory, logic, and neuromorphic devices are conceived based on atomically thin magnetic materials and the manipulation of their spin-polarized bands via electrical and optical methods. A critical remaining issue is the direct probe and the optimized use of the magnetic coupling effect in van der Waals heterostructures, which requires further delicate design of atomically thin magnetic materials and devices. Here, a spin-selective memtransistor with magnetized single-layered graphene on a reactive antiferromagnetic material, CrI3, is reported. The spin-dependent hybridization between graphene and CrI3 atomic layers enables the spin-selective bandgap opening in the single-layered graphene and the electric field control of magnetization in a specific CrI3 layer. The microscopic working principle is clarified by the first-principles calculations and theoretical analysis of the transport data. Reliable memtransistor operations (i.e., memory and logic device-combined operations), as well as a spin-selective probe of Landau levels in the magnetized graphene, are achieved by using the subtle manipulation of the magnetic proximity effect via electrical means.

3.
Adv Mater ; : e2402040, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798189

RESUMEN

Topological quantum phases are largely understood in weakly correlated systems, which have identified various quantum phenomena, such as the spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials particularly attracts attention, as it can provide a versatile platform for novel quantum devices. Here, a singular Hall response arising from a unique band structure of flat topological nodal lines in combination with electron correlation in a van der Waals ferromagnetic semimetal, Fe3GaTe2, with a high Curie temperature of Tc = 347 K is reported. High anomalous Hall conductivity violating the conventional scaling, resistivity upturn at low temperature, and a large Sommerfeld coefficient are observed in Fe3GaTe2, which implies heavy fermion features in this ferromagnetic topological material. The scanning tunneling microscopy, circular dichroism in angle-resolved photoemission spectroscopy, and theoretical calculations support the original electronic features of the material. Thus, low-dimensional Fe3GaTe2 with electronic correlation, topology, and room-temperature ferromagnetic order appears to be a promising candidate for robust quantum devices.

4.
Nanoscale ; 14(28): 10009-10015, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35793144

RESUMEN

Two-dimensional transition-metal dichalcogenides have attracted great attention recently. Motivated by a recent study of crystalline bulk VTe2, we theoretically investigated the spin-charge-lattice interplay in monolayer VTe2. To understand the controversial experimental reports on several different charge density wave ground states, we paid special attention to the 'hidden' role of antiferromagnetism as its direct experimental detection may be challenging. Our first-principles calculations show that the 4 × 1 charge density wave and the corresponding lattice deformation are accompanied by the 'double-stripe' antiferromagnetic spin order in its ground state. This phase has not only the lowest total energy but also dynamic phonon stability, which supports a group of previous experiments. Interestingly enough, this ground state is stabilized only by assuming the underlying spin order. By noticing this intriguing and previously unknown interplay between magnetism and other degrees of freedom, we further suggest a possible strain engineering. By applying tensile strain, monolayer VTe2 exhibits a phase transition first to a different charge density wave phase and then eventually to a ferromagnetically ordered one.

5.
J Phys Condens Matter ; 32(24): 245501, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32079011

RESUMEN

A new first-principles computation scheme to calculate 'branching ratio' has been applied to various 5d, 4d, and 3d transition metal elements and compounds. This recently suggested method is based on a theory which assumes the atomic core hole interacts barely with valence electrons. While it provides an efficient way to calculate the experimentally measurable quantity without generating spectrum itself, its reliability and applicability should be carefully examined especially for the light transition metal systems. Here we select 36 different materials and compare the calculation results with experimental data. It is found that our scheme well describes 5d and 4d transition metal systems whereas, for 3d materials, the difference between the calculation and experiment is quite significant. It is attributed to the neglect of core-valence interaction whose energy scale is comparable with the spin-orbit coupling of core p orbitals.

6.
Adv Mater ; 32(11): e1906578, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32027057

RESUMEN

Lattice distortion, spin interaction, and dimensional crossover in transition metal dichalcogenides (TMDs) have led to intriguing quantum phases such as charge density waves (CDWs) and 2D magnetism. However, the combined effect of many factors in TMDs, such as spin-orbit, electron-phonon, and electron-electron interactions, stabilizes a single quantum phase at a given temperature and pressure, which restricts original device operations with various quantum phases. Here, nontrivial polymorphic quantum states, CDW phases, are reported in vanadium ditelluride (VTe2 ) at room temperature, which is unique among various CDW systems; the doping concentration determines the formation of either of the two CDW phases in VTe2 at ambient conditions. The two CDW polymorphs show different antiferromagnetic spin orderings in which the vanadium atoms create two different stripe-patterned spin waves. First-principles calculations demonstrate that the magnetic ordering is critically coupled with the corresponding CDW in VTe2 , which suggests a rich phase diagram with polymorphic spin, charge, and lattice waves all coexisting in a solid for new conceptual quantum state-switching device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA