Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547066

RESUMEN

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Asunto(s)
Vejiga Urinaria , Infecciones Urinarias , Animales , Humanos , Vejiga Urinaria/cirugía , Urodinámica/fisiología , Prótesis e Implantes , Cistectomía
2.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012326

RESUMEN

The present study evaluated the properties and ochratoxin A (OTA) degradation capacity of the dietary probiotic Pediococcus pentosaceus BalaMMB-P3, isolated from a milk coagulant. The acidic tolerance of the isolate at pH 2-3 was checked with bile salts. No hemolytic activity was noted, which confirmed the nonpathogenicity of the strain. The isolate was tested in vitro for antibiotic susceptibility, enzymatic activity, bile salts hydrolase activity and antifungal activity against Penicillium verrucosum, Fusarium graminearum and Aspergillus ochraceus. A molecular docking-based OTA toxicity assessment was carried out for multitargeted proteins. The 16S rRNA gene-based phylogenetic assessment identified the strain as P. pentosaceus, and was authenticated in GenBank. The carboxylesterase and glutathione s-transferase enzymes showed active and strong interactions with esters and amide bonds, respectively. The compound exhibited carcinogenic and cytotoxicity effects at an LD50 value of 20 mg/kg. Furthermore, the strain showed a potent ability to reduce OTA and suggested the prospects for utilization in nutritional aspects of food.


Asunto(s)
Pediococcus pentosaceus , Probióticos , Ácidos y Sales Biliares/metabolismo , Simulación del Acoplamiento Molecular , Ocratoxinas , Pediococcus/metabolismo , Pediococcus pentosaceus/metabolismo , Filogenia , Probióticos/metabolismo , ARN Ribosómico 16S/genética
3.
Nanotechnology ; 32(14): 145401, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33348328

RESUMEN

Coaxial type piezoelectric energy generator (C-PEG) nanofiber was fabricated by a self-designed continuous electrospinning deposition system. Piezoelectric PVDF-TrFE nanofiber as an electroactive material was electrospun at a discharge voltage of 9-12 kV onto a simultaneously rotating and transverse moving Cu metal wire at an angular velocity of ω g = 60-120 RPM. The piezoelectric coefficient d33 of the PVDF-TrFE nanofiber was approximately -20 pm V-1. The generated output voltage (V G) increased according to the relationship exp(-α P) (α = 0.41- 0.57) as the pressure (P) increased from 30 to 500 kpa. The V G values for ten and twenty pieces of C-PEG were V G = 3.9 V and 9.5 V at P = 100 kpa, respectively, relatively high output voltages compared to previously reported values. The high V G for the C-PEG stems from the fact that it can generate a fairly high V G due to the increased number of voltage collection points compared to a conventional two-dimensional (2-dim) capacitor type of piezoelectric film or fiber device. C-PEG yarn was also fabricated via the dip-coating of a PDMS polymer solution, followed by winding with Ag-coated nylon fiber as an outer electrode. The current and power density of ten pieces of C-PEG yarn were correspondingly 22 nA cm-2 and 8.6 µW cm-3 at V G = 1.97 V, higher than previously reported values of 5.54 and 6 µW cm-3. The C-PEG yarn, which can generate high voltage compared to the conventional film/nanofiber mat type, is expected to be very useful as a wearable energy generator system.

4.
J Pharmacol Sci ; 138(2): 146-154, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30392804

RESUMEN

Cinnamomum cassia Blume has been widely reported as the anti-tumor agent. However, the precise mechanism underlying its pro-apoptotic action is still not clear. Restraining aerobic glycolysis through suppression of pyruvate dehydrogenase kinase (PDHK) is a promising strategy for cancer inhibition. In this study, we performed to investigate the anti-tumor action of C. cassia is mediated by PDHK inhibition. The inhibition of water-extracted branch of C. cassia (WBCC) on the activity of PDHK using both in vitro and cell-based kinase assay were examined in several lung cancer cells. WBCC reduced viabilities of several lung cancer cells with minimal cytotoxicity on normal bronchial epithelial cells. WBCC decreased lactate production through inhibiting activity of PDHK. In consequence of PDHK inhibition, WBCC increased ROS production, which damage mitochondria membrane stability. In addition, WBCC induced ROS- and mitochondria-dependent apoptotic cell death. Among the components of WBCC, cinnamic acid was founded as a major inhibitor on PDHK activity. This is first report that WBCC induces apoptosis of lung cancer cells through inhibiting PDHK activity. Our findings suggest that WBCC and cinnamic acid can be potential candidates for developing novel anti-cancer drugs through glycolysis metabolism.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Cinnamomum aromaticum/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Extractos Vegetales/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Agua , Células Cultivadas , Glucólisis/efectos de los fármacos , Humanos , Lactatos/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Estimulación Química , Células Tumorales Cultivadas
5.
Org Biomol Chem ; 15(31): 6511-6519, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28745371

RESUMEN

Fluorescent contrast agents are important tools in cell biology and medical imaging due to their high sensitivity and relative availability. Diketopyrrolopyrrole (DPP) derivatives have been recently studied for applications in bioimaging, but certain drawbacks due to their inherent structure have stifled progress towards their widespread implementation. Aggregation caused quenching (ACQ) associated with π-π stacking in relatively rigid extended conjugation systems as well as hydrophobicity of previously reported DPPs make most unsuitable for biological imaging applications. Addressing these deficiencies, we report the synthesis and photophysical characterization of two new water-soluble diketopyrrolopyrole (DPP) probes that exhibit pronounced protein-induced fluorescence enhancement (PIFE) upon binding serum albumin protein. In vitro studies were also performed showing low cytotoxicity for the new DPP probes. Two-photon fluorescence microscopy (2PFM) images were obtained via excitation at 810 nm and emission in the NIR window of biological transparency, illustrating the potential of these compounds as nonlinear optical bioimaging probes.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Óptica/métodos , Pirroles/química , Albúmina Sérica/metabolismo , Supervivencia Celular/efectos de los fármacos , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/toxicidad , Células HCT116 , Humanos , Microscopía Fluorescente/métodos , Fotones , Unión Proteica , Pirroles/síntesis química , Pirroles/metabolismo , Pirroles/toxicidad , Solubilidad , Agua/química
6.
Sensors (Basel) ; 17(2)2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-28125007

RESUMEN

In wireless sensor networks (WSNs), the accuracy of location information is vital to support many interesting applications. Unfortunately, sensors have difficulty in estimating their location when malicious sensors attack the location estimation process. Even though secure localization schemes have been proposed to protect location estimation process from attacks, they are not enough to eliminate the wrong location estimations in some situations. The location verification can be the solution to the situations or be the second-line defense. The problem of most of the location verifications is the explicit involvement of many sensors in the verification process and requirements, such as special hardware, a dedicated verifier and the trusted third party, which causes more communication and computation overhead. In this paper, we propose an efficient location verification scheme for static WSN called mutually-shared region-based location verification (MSRLV), which reduces those overheads by utilizing the implicit involvement of sensors and eliminating several requirements. In order to achieve this, we use the mutually-shared region between location claimant and verifier for the location verification. The analysis shows that MSRLV reduces communication overhead by 77% and computation overhead by 92% on average, when compared with the other location verification schemes, in a single sensor verification. In addition, simulation results for the verification of the whole network show that MSRLV can detect the malicious sensors by over 90% when sensors in the network have five or more neighbors.

7.
Phytopathology ; 105(9): 1183-90, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25871856

RESUMEN

Application of nanoparticles for controlling plant pathogens is a rapidly emerging area in plant disease management, and nanoparticles synthesis methods that are economical and ecofriendly are extensively investigated. In this project, we investigated the potential of silver nanoparticles (AgNPs) synthesized with aqueous extract of Artemisia absinthium against several Phytophthora spp., which cause many economically important crop diseases. In in vitro dose-response tests conducted in microtiter plates, 10 µg ml⁻¹ of AgNPs inhibited mycelial growth of P. parasitica, P. infestans, P. palmivora, P. cinnamomi, P. tropicalis, P. capsici, and P. katsurae. Detailed in vitro dose-response analyses conducted with P. parasitica and P. capsici revealed that AgNPs synthesized with A. absinthium extract were highly potent (IC50: 2.1 to 8.3 µg ml⁻¹) and efficacious (100%) in inhibiting mycelial growth, zoospore germination, germ tube elongation, and zoospore production. Interestingly, AgNP treatment accelerated encystment of zoospores. Consistent with in vitro results, in planta experiments conducted in a greenhouse revealed that AgNP treatments prevented Phytophthora infection and improved plant survival. Moreover, AgNP in in planta experiments did not produce any adverse effects on plant growth. These investigations provide a simple and economical method for controlling Phytophthora with AgNP without affecting normal plant physiology.


Asunto(s)
Artemisia absinthium/química , Nanopartículas del Metal/química , Phytophthora/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/farmacología , Plata/farmacología , Phytophthora/crecimiento & desarrollo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
8.
Chemistry ; 20(24): 7249-53, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24839110

RESUMEN

Deoxyribonucleoside-modified squaraines were synthesized by Sonogashira coupling reactions using an unsymmetrical, terminal alkynylated benzothiazolium squaraine dye. These non-natural nucleosides exhibited fluorescent 'turn-on' properties in viscous conditions with an enhancement of >300-fold. The viscosity-dependent fluorescence enhancement was attributed to a combination of hampering both molecular aggregation and intramolecular bond rotation of the squaraine probe. Fluorescence microscopy allowed visualization of highly viscous regions during various stages of cellular mitosis.


Asunto(s)
Ciclobutanos/química , Fenoles/química , Desoxirribonucleósidos , Colorantes Fluorescentes , Modelos Moleculares , Estructura Molecular
9.
Nat Commun ; 15(1): 9014, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39424832

RESUMEN

Photon-magnon coupling, where electromagnetic waves interact with spin waves, and negative refraction, which bends the direction of electromagnetic waves unnaturally, constitute critical foundations and advancements in the realms of optics, spintronics, and quantum information technology. Here, we explore a magnetic-field-controlled, on-off switchable, non-reciprocal negative refractive index within a non-Hermitian photon-magnon hybrid system. By integrating an yttrium iron garnet film with an inverted split-ring resonator, we discover pronounced negative refractive index driven by the system's non-Hermitian properties. This phenomenon exhibits unique non-reciprocal behavior dependent on the signal's propagation direction. Our analytical model sheds light on the crucial interplay between coherent and dissipative coupling, significantly altering permittivity and permeability's imaginary components, crucial for negative refractive index's emergence. This work pioneers new avenues for employing negative refractive index in photon-magnon hybrid systems, signaling substantial advancements in quantum hybrid systems.

10.
Exp Mol Med ; 56(5): 1137-1149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689087

RESUMEN

Osimertinib, a selective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), effectively targets the EGFR T790M mutant in non-small cell lung cancer (NSCLC). However, the newly identified EGFR C797S mutation confers resistance to osimertinib. In this study, we explored the role of pyruvate dehydrogenase kinase 1 (PDK1) in osimertinib resistance. Patients exhibiting osimertinib resistance initially displayed elevated PDK1 expression. Osimertinib-resistant cell lines with the EGFR C797S mutation were established using A549, NCI-H292, PC-9, and NCI-H1975 NSCLC cells for both in vitro and in vivo investigations. These EGFR C797S mutant cells exhibited heightened phosphorylation of EGFR, leading to the activation of downstream oncogenic pathways. The EGFR C797S mutation appeared to increase PDK1-driven glycolysis through the EGFR/AKT/HIF-1α axis. Combining osimertinib with the PDK1 inhibitor leelamine helped successfully overcome osimertinib resistance in allograft models. CRISPR-mediated PDK1 knockout effectively inhibited tumor formation in xenograft models. Our study established a clear link between the EGFR C797S mutation and elevated PDK1 expression, opening new avenues for the discovery of targeted therapies and improving our understanding of the roles of EGFR mutations in cancer progression.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Mutación , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Humanos , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Animales , Línea Celular Tumoral , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Femenino , Masculino , Indoles , Pirimidinas
11.
Curr Res Food Sci ; 9: 100879, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39493700

RESUMEN

Research on Hanwoo cattle has focused on the pleomorphic adenoma gene (PLAG) family, vital for traits like growth and carcass quality. Single nucleotide polymorphisms (SNPs) within this gene family profoundly impact economic traits. At the cellular level, energy and protein sources, notably glucose and lysine, crucially regulate muscle satellite cell (MSC) growth and differentiation. This study delved into how varied glucose and lysine levels affect gene expression patterns in Hanwoo MSC. MSC from 9 Hanwoo, aged 29-36 months, categorized into 3 PLAG1 genotypes (GG, GC, CC), were treated with six combinations of glucose (5.5 and 25 mM) and lysine (2, 4, and 8 mM). Analysis of myogenic and adipogenic genes linked to meat quality and quantity ensued. The GG genotype displayed superior dressed percentage, yield grade, and marbling score, hinting at genotype-associated carcass characteristic disparities. In cell culture, gene expression generally rose with lysine addition to high glucose in the GG group. Contrarily, significant differences across all treatments in the GC genotype suggested distinct responses. Significant effects of genotype, glucose, and lysine on cell proliferation-related gene expression were noted. Highest mRNA expression for MyoD, MyoG, and FASN occurred in the CC genotype, while Myf5 and Pax7 expression peaked in the GG genotype. Glucose significantly influenced Pax7 and FASN expression, while lysine positively impacted MyoD and MyoG genes. Notable interactions, especially in Genotype × Lysine, influenced MyoD, Myf5, and Pax7 expression, highlighting complex relationships in cell proliferation. Regarding cell differentiation, Pax7 expression was highest in PLAG1 GG type. High glucose prompted wider myotubes, while lower lysine concentrations slightly favored cell differentiation. Correspondingly, MyoG expression decreased with higher lysine levels. This study furnishes insights into lysine and glucose supplementation effects on bovine MSC proliferation and differentiation, considering PLAG1 genotype influence. It offers valuable data for beef production system establishment and optimizing cell-based food production.

12.
Sci Adv ; 10(18): eadl5067, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701201

RESUMEN

Airborne pathogens retain prolonged infectious activity once attached to the indoor environment, posing a pervasive threat to public health. Conventional air filters suffer from ineffective inactivation of the physics-separated microorganisms, and the chemical-based antimicrobial materials face challenges of poor stability/efficiency and inefficient viral inactivation. We, therefore, developed a rapid, reliable antimicrobial method against the attached indoor bacteria/viruses using a large-scale tunneling charge-motivated disinfection device fabricated by directly dispersing monolayer graphene on insulators. Free charges can be stably immobilized under the monolayer graphene through the tunneling effect. The stored charges can motivate continuous electron loss of attached microorganisms for accelerated disinfection, overcoming the diffusion limitation of chemical disinfectants. Complete (>99.99%) and broad-spectrum disinfection was achieved <1 min of attachment to the scaled-up device (25 square centimeters), reliably for 72 hours at high temperature (60°C) and humidity (90%). This method can be readily applied to high-touch surfaces in indoor environments for pathogen control.


Asunto(s)
Desinfección , Electrónica , Grafito , Desinfección/métodos , Electrónica/métodos , Grafito/química , Viabilidad Microbiana , Bacterias
13.
J Antimicrob Chemother ; 68(5): 1152-60, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23302580

RESUMEN

OBJECTIVES: HG1 is an antimicrobial peptide derived from halocidin, which is naturally found in tunicates. The purpose of this study was to evaluate the therapeutic potential of HG1 as a novel antifungal agent for treating oral candidiasis. METHODS: The pharmacokinetic properties of HG1 were explored in mice, which were orally administered a single dose of HG1. Anti-Candida activity of HG1 was investigated in a time-dependent manner in the presence of saliva obtained from healthy donors or patients with oral candidiasis. In addition, HG1 was evaluated for its anti-Candida activity in the presence of proteins extracted from the culture supernatant of Candida albicans. The therapeutic potential in vivo and ex vivo of HG1 against oral candidiasis was investigated using a mouse model of oral candidiasis. RESULTS: Our data showed that absorption of HG1 into the blood did not occur following oral administration. In addition, HG1 exerted marked anti-Candida activity after short-term incubation at a concentration of 20 mg/L and it also caused a considerable reduction in fungal burden in the oral candidiasis mouse model when treated with 1 mg or 0.5 mg. CONCLUSIONS: This study suggests that HG1, as a novel component of mouthwash, might become an alternative antifungal agent to conventional drugs used to manage oral candidiasis.


Asunto(s)
Antifúngicos/administración & dosificación , Productos Biológicos/administración & dosificación , Candida albicans/efectos de los fármacos , Candidiasis Bucal/tratamiento farmacológico , Péptidos/administración & dosificación , Administración Oral , Animales , Antifúngicos/farmacocinética , Productos Biológicos/farmacocinética , Candidiasis Bucal/microbiología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos ICR , Péptidos/farmacocinética
14.
Langmuir ; 29(35): 11005-12, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23947941

RESUMEN

Controlling the aggregation behavior of organic dyes is important for understanding and exploring supramolecular assembly utilizing the specific characteristics of aggregation. Regulating J-aggregation by electrostatic interactions between anionic polyelectrolytes and cationic dyes has gained growing interest. Here, we report the formation of J-aggregates of a water-soluble cationic squaraine dye, 4-(pyridinium-1-yl)butylbenzothiazolium squaraine (SQ), using poly(acrylic acid) sodium salt (PAA-Na) as a template. Electrostatic interactions between the PAA-Na polyelectrolyte and the cationic SQ dye enhanced J-aggregation; the absorbance of the resulting J-band with the polyelectrolyte template was much sharper than the absorbance of the J-aggregate formed using a high concentration of NaCl. Significantly, removal of the polyelectrolyte PPA-Na template by the introduction of calcium ions, which can form stronger ionic binding with carboxylate groups, dissociated J-aggregates, freeing the SQ molecules back to unaggregated or lower aggregate forms. To demonstrate the reversibility of the J-aggregate formation cycle, an in situ experiment was conducted that showed 60% reversibility of the second cycle. In addition, an enhancement by ca. 23 times per repeat unit of the two-photon absorption (2PA) cross section was observed at 920 nm for the polyelectrolyte template-SQ J-aggregate compared to unaggregated or lower aggregate SQ. These results suggest a prominent role of polyelectrolyte templated SQ J-aggregation in the enhancement of 2PA efficiency and provide a means of modulating supramolecular assembly.

15.
J Org Chem ; 78(18): 9153-60, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23984818

RESUMEN

Near-infrared (NIR) fluorescent probes are increasingly popular in biological imaging and sensing, as long-wavelength (650-900 nm) excitation and emission have the advantages of minimum photodamage, deep tissue penetration, and minimum interference from autofluorescence in living systems. Here, a series of long-wavelength BODIPY dyes SPC, DC-SPC, DPC, and DC-DPC are synthesized conveniently and efficiently. They exhibit excellent photophysical properties in far red to near-infrared region, including large extinction coefficients, high fluorescence quantum yields, good photostability, and reasonable two-photon absorption cross section. Comparison of single-molecular imaging confirms that DPC is a much more efficient and more photostable NIR fluorophore than the commonly used Cy5. Also importantly, two kinds of convenient functionalization sites have been reserved: the aryl iodide for organometallic couplings and the terminal alkyne groups for click reactions. Further derivatives DC-SPC-PPh3 exhibit specificity to localize in mitochondria. The introduction of triphenylphosphonium (TPP) moieties mediates its hydrophilic-lipophilic balance and makes DC-SPC-PPh3 appropriate for cell labeling. Their long-wavelength emission at ∼650 nm can efficiently avoid the spectral crosstalk with other probes emitting in the visible light region. Superior photostability, low cytotoxicity, and two-photon excitable properties demonstrate its utility as a standard colocalizing agent to estimate the other probes' local distribution.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Estructura Molecular , Procesos Fotoquímicos , Fotones
16.
Curr Res Food Sci ; 7: 100545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455679

RESUMEN

This study compared the cellular and genetic characteristics of bovine skeletal muscle satellite cells (SMSCs) from Hanwoo (a Korean native cattle breed), including calves and mature cattle. SMSCs were isolated using magnetic-activated cell sorting (MACS) from tissue samples of six Hanwoo (three calves and three mature cattle) using the CD29 antibody. Calves' SMSCs exhibited significantly faster growth rates than did those from cattle (P < 0.01), with a doubling time of 2.43 days. Genetic analysis revealed higher MyoD and Pax7 expression in SMSCs from calves during proliferation than in those from mature cattle (P < 0.001). However, FASN and PLAG1 expression levels were higher in mature cattle than in calves during both proliferation and differentiation (P < 0.001). These findings highlight the need for strategies to improve bovine muscle cell growth to produce competitive cultivated meat at a competitive price.

17.
Exp Mol Med ; 55(8): 1573-1594, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37612413

RESUMEN

Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.


Asunto(s)
Apoptosis , Piroptosis , Humanos , Muerte Celular , Necrosis , Inflamación
18.
Foods ; 12(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36981208

RESUMEN

Color is a major feature that strongly influences the consumer's perception, selection, and acceptance of various foods. An improved understanding regarding bio-safety protocols, health welfare, and the nutritional importance of food colorants has shifted the attention of the scientific community toward natural pigments to replace their toxic synthetic counterparts. However, owing to safety and toxicity concerns, incorporating natural colorants directly from viable sources into plant-based meat (PBM) has many limitations. Nonetheless, over time, safe and cheap extraction techniques have been developed to extract the purified form of coloring agents from raw materials to be incorporated into PBM products. Subsequently, extracted anthocyanin has displayed compounds like Delphinidin-3-mono glucoside (D3G) at 3.1 min and Petunidin-3-mono glucoside (P3G) at 5.1 277, 515, and 546 nm at chromatographic lambda. Fe-pheophytin was successfully generated from chlorophyll through the ion exchange method. Likewise, the optical density (OD) of synthesized leghemoglobin (LegH) indicated that pBHA bacteria grow more rigorously containing ampicillin with a dilution factor of 10 after 1 h of inoculation. The potential LegH sequence was identified at 2500 bp through gel electrophoresis. The color coordinates and absorbance level of natural pigments showed significant differences (p < 0.05) with the control. The development of coloring agents originating from natural sources for PBM can be considered advantageous compared to animal myoglobin in terms of health and functionality. Therefore, the purpose of this study was to produce natural coloring agents for PBM by extracting and developing chlorophyll from spinach, extracting anthocyanins from black beans, and inserting recombinant plasmids into microorganisms to produce LegH.

19.
Front Nutr ; 10: 1110613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229478

RESUMEN

This study explored the changes in the physiochemical, textural, sensory, and functional characteristics of plant-based meat (PBM) after incorporating novel plant-based ingredients including spirulina (SPI), duck Weed (DW), and yellow Chlorella (YC). In the chromaticity evaluation, the YC group (YCI YC2, and YC3%) displayed significant differences (p < 0.05) in lightness (L*) indices as compared to the control. Whereas, based on concertation gradient of SPI microalgae (SP0.5, SP0.7, and SP1%) incorporated into PBM patties demonstrated that SPI 1 had the lowest values (p < 0.05) in redness (a*) and yellowness (b*) followed by SPI 0.7 and SPI 0.5% concentration, respectively. The concentration gradient of the YC group indicated that YC3 was intended to be the highest crude fat value followed by YC2 and YCI. The ash content in PBM patties increased considerably (p < 0.05) as the concentration level of microalgae advanced in all treated groups. Based on the concentration level of YC incorporated microalgae into PBM patties indicated that YC 3 had the highest (p < 0.05) gumminess and chewiness while YC 1 had the lowest reported values in terms of gumminess and chewiness. Moreover, springiness and cohesiveness showed considerable differences between SPI and YC groups. In the sensory evaluation, SPI 1 showed the lowest value only in color and appearance (p < 0.05), conversely, the other sensory parameters were non-significant among all treatment groups (p > 0.05). The micronutrient in PBM presented an irregular pattern after incorporating various ingredients. However, levels were higher (p < 0.05) in the DW group (DW 0.5 DW 0.7, and DW% 1) than those in the other groups. Moreover, the SPI and YC groups showed detectable levels of diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with, SP 1 showing the highest level of antioxidant activity. Acknowledging the limited research on PBM production, extraction technologies, and selecting various novel suitable ingredients in meat substitutes. Hence, to fill this knowledge gap an attempt has been made to incorporate various concentrations of microalgae including SPI, YC, and DW to enhance the quality and functionality of meat alternatives. To the best of our knowledge, this is the first report that describes the physiochemical, textural, sensory, and nutritional attributes of PBM incorporated with novel microalgae. Collectively these results indicate that the incorporation of SPI, DW, and YC may improve the quality of PBM without showing deleterious outcomes on the quality and functionality of the ultimate PBM products.

20.
Adv Sci (Weinh) ; 10(3): e2204801, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36437039

RESUMEN

To prevent surgical site infection (SSI), which significantly increases the rate morbidity and mortality, eliminating microorganisms is prominent. Antimicrobial resistance is identified as a global health challenge. This work proposes a new strategy to eliminate microorganisms of deep tissue through electrical stimulation with an ultrasound (US)-driven implantable, biodegradable, and vibrant triboelectric nanogenerator (IBV-TENG). After a programmed lifetime, the IBV-TENG can be eliminated by provoking the on-demand device dissolution by controlling US intensity with no surgical removal of the device from the body. A voltage of ≈4 V and current of ≈22 µA generated from IBV-TENG under ultrasound in vitro, confirming inactivating ≈100% of Staphylococcus aureus and ≈99% of Escherichia coli. Furthermore, ex vivo results show that IBV-TENG implanted under porcine tissue successfully inactivates bacteria. This antibacterial technology is expected to be a countermeasure strategy against SSIs, increasing life expectancy and healthcare quality by preventing microorganisms of deep tissue.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Animales , Porcinos , Ultrasonografía , Antibacterianos/uso terapéutico , Estimulación Eléctrica , Escherichia coli
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA