Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34883926

RESUMEN

In general, facial image-based remote photoplethysmography (rPPG) methods use color-based and patch-based region-of-interest (ROI) selection methods to estimate the blood volume pulse (BVP) and beats per minute (BPM). Anatomically, the thickness of the skin is not uniform in all areas of the face, so the same diffuse reflection information cannot be obtained in each area. In recent years, various studies have presented experimental results for their ROIs but did not provide a valid rationale for the proposed regions. In this paper, to see the effect of skin thickness on the accuracy of the rPPG algorithm, we conducted an experiment on 39 anatomically divided facial regions. Experiments were performed with seven algorithms (CHROM, GREEN, ICA, PBV, POS, SSR, and LGI) using the UBFC-rPPG and LGI-PPGI datasets considering 29 selected regions and two adjusted regions out of 39 anatomically classified regions. We proposed a BVP similarity evaluation metric to find a region with high accuracy. We conducted additional experiments on the TOP-5 regions and BOT-5 regions and presented the validity of the proposed ROIs. The TOP-5 regions showed relatively high accuracy compared to the previous algorithm's ROI, suggesting that the anatomical characteristics of the ROI should be considered when developing a facial image-based rPPG algorithm.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Algoritmos , Cara/diagnóstico por imagen , Frecuencia Cardíaca
2.
Bioengineering (Basel) ; 9(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36354549

RESUMEN

The photoplethysmography (PPG) signal contains various information that is related to CVD (cardiovascular disease). The remote PPG (rPPG) is a method that can measure a PPG signal using a face image taken with a camera, without a PPG device. Deep learning-based rPPG methods can be classified into three main categories. First, there is a 3D CNN approach that uses a facial image video as input, which focuses on the spatio-temporal changes in the facial video. The second approach is a method that uses a spatio-temporal map (STMap), and the video image is pre-processed using the point where it is easier to analyze changes in blood flow in time order. The last approach uses a preprocessing model with a dichromatic reflection model. This study proposed the concept of an axis projection network (APNET) that complements the drawbacks, in which the 3D CNN method requires significant memory; the STMap method requires a preprocessing method; and the dyschromatic reflection model (DRM) method does not learn long-term temporal characteristics. We also showed that the proposed APNET effectively reduced the network memory size, and that the low-frequency signal was observed in the inferred PPG signal, suggesting that it can provide meaningful results to the study when developing the rPPG algorithm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA