Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(20): 6366-6375, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37782649

RESUMEN

The human telomeric (htel) sequences in the terminal regions of human telomeres form diverse G-quadruplex (GQ) structures. Despite much experimental efforts to elucidate the folding pathways of htel GQ, no comprehensive model of htel GQ folding has been presented. Here, we describe folding pathways of the htel GQ determined by state-of-the-art enhanced sampling molecular dynamics simulation at the all-atom level. Briefly, GQ folding is initiated by the formation of a single-hairpin and then followed by the formation of double-hairpins, which then branch via distinct folding pathways to produce different GQ topologies (antiparallel chair, antiparallel basket, hybrids 1 and 2, and parallel propeller). In addition to these double-hairpin states, three-triad and two-tetrad structures in antiparallel backbone alignment serve as key intermediates that connect the GQ folding and transition between two different GQs.


Asunto(s)
G-Cuádruplex , Humanos , ADN/química , Simulación de Dinámica Molecular , Secuencia de Bases , Telómero
2.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164164

RESUMEN

Interleukin-1 beta (IL-1ß) has diverse physiological functions and plays important roles in health and disease. In this report, we focus on its function in the production of pro-inflammatory cytokines, including IL-6 and IL-8, which are implicated in several autoimmune diseases and host defense against infection. IL-1ß activity is markedly dependent on the binding affinity toward IL-1 receptors (IL-1Rs). Several studies have been conducted to identify suitable small molecules that can modulate the interactions between 1L-1ß and 1L-1R1. Based on our previous report, where DPIE [2-(1,2-Diphenyl-1H-indol-3-yl)ethanamine] exhibited such modulatory activity, three types of DPIE derivatives were synthesized by introducing various substituents at the 1, 2, and 3 positions of the indole group in DPIE. To predict a possible binding pose in complex with IL-1R1, a docking simulation was performed. The effect of the chemicals was determined in human gingival fibroblasts (GFs) following IL-1ß induction. The DPIE derivatives affected different aspects of cytokine production. Further, a group of the derivatives enabled synergistic pro-inflammatory cytokine production, while another group caused diminished cytokine production compared to DPIE stimulation. Some groups displayed no significant difference after stimulation. These findings indicate that the modification of the indole site could modulate IL-1ß:IL1R1 binding affinity to reduce or enhance pro-inflammatory cytokine production.


Asunto(s)
Citocinas/agonistas , Citocinas/antagonistas & inhibidores , Indoles/farmacología , Mediadores de Inflamación/agonistas , Mediadores de Inflamación/antagonistas & inhibidores , Fenetilaminas/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Indoles/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-1beta/agonistas , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Fenetilaminas/química
3.
Inorg Chem ; 59(5): 3042-3052, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31995361

RESUMEN

As one of the perovskite families, potassium sodium niobates (K1-xNax)NbO3 (KNN) have been gaining tremendous attention due to their various functional properties which can be largely determined by their crystallographic phase and composition. However, a selective evolution of different phases for KNN with controlled composition can be difficult to achieve, especially in solution chemical synthesis because of its strong tendency to stabilize into orthorhombic phase at conventional synthetic temperature. We herein developed a facile solution approach to control the phase and composition of dopant-free KNN particles selectively through the modification of reaction parameters. A conventional hydrothermal synthesis method yielded orthorhombic KNN particles, while the monoclinic phase, which has never been observed in a bulk counterpart, was kinetically generated by the compositional modification of an intermediate phase under a high-intensity ultrasound irradiation. Cubic KNN particles were stabilized when ethylene glycol was used as a co-solvent together with deionized water through bonding between ethylene glycol molecules and the surface of the KNN. Composite-structured piezoelectric harvesters were fabricated using each phase of KNN particles and the ß-phase poly(vinylidene fluoride-co-trifluoroethylene) polymer. Maximum output power was found for the harvester containing orthorhombic KNN particles. This facile synthetic methodology could pave a new pathway for fabricating numerous phase-controlled materials.

4.
Phytother Res ; 34(8): 2032-2043, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32144852

RESUMEN

Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.


Asunto(s)
Chalconas/uso terapéutico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Janus Quinasa 2/antagonistas & inhibidores , Apoptosis , Línea Celular Tumoral , Chalconas/farmacología , Carcinoma de Células Escamosas de Esófago/patología , Humanos
5.
Phytother Res ; 34(2): 388-400, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31698509

RESUMEN

Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Chalconas/farmacología , Gefitinib/farmacología , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Chaperón BiP del Retículo Endoplásmico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Raíces de Plantas/química , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-met/genética , Quinazolinas/farmacología
6.
Molecules ; 25(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717858

RESUMEN

The synthesis of three water-soluble lactose-modified 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based photosensitizers with tumor-targeting capabilities is reported, including an investigation into their photodynamic therapeutic activity on three distinct cancer cell lines (human hepatoma Huh7, cervical cancer HeLa, and breast cancer MCF-7 cell lines). The halogenated BODIPY dyes exhibited a decreased fluorescence quantum yield compared to their non-halogenated counterpart, and facilitated the efficient generation of singlet oxygen species. The synthesized dyes exhibited low cytotoxicities in the dark and high photodynamic therapeutic capabilities against the treated cancer cell lines following irradiation at 530 nm. Moreover, the incorporation of lactose moieties led to an enhanced cellular uptake of the BODIPY dyes. Collectively, the results presented herein provide promising insights for the development of photodynamic therapeutic agents for cancer treatment.


Asunto(s)
Compuestos de Boro/síntesis química , Lactosa/química , Neoplasias/metabolismo , Fármacos Fotosensibilizantes/síntesis química , Compuestos de Boro/química , Compuestos de Boro/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Química Clic , Células HeLa , Humanos , Células MCF-7 , Neoplasias/terapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Puntos Cuánticos , Oxígeno Singlete/metabolismo
7.
J Cell Physiol ; 234(2): 1780-1793, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30070696

RESUMEN

Licochalcone (LC) families have been reported to have a wide range of biological function such as antioxidant, antibacterial, antiviral, and anticancer effects. Although various beneficial effects of LCD were revealed, its anticancer effect in human oral squamous cancer has not been identified. To examine the signaling pathway of LCD's anticancer effect, we determined whether LCD has physical interaction with Janus kinase (JAK2)/signal transducer and activator of transcription-3 (STAT3) signaling, which is critical in promoting cancer cell survival and proliferation. Our results demonstrated that LCD inhibited the kinase activity of JAK2, soft agar colony formation, and the proliferation of HN22 and HSC4 cells. LCD also induced mitochondrial apoptotic events such as altered mitochondrial membrane potential and reactive oxygen species production. LCD increased the expression of apoptosis-associated proteins in oral squamous cell carcinoma (OSCC) cells. Finally, the xenograft study showed that LCD significantly inhibited HN22 tumor growth. Immunohistochemical data supported that LCD suppressed p-JAK2 and p-STAT3 expression and induced cleaved-caspase-3 expression. These results indicate that the anticancer effect of LCD is due to the direct targeting of JAK2 kinase. Therefore, LCD can be used for therapeutic application against OSCC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Chalconas/farmacología , Janus Quinasa 2/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Janus Quinasa 2/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Terapia Molecular Dirigida , Neoplasias de la Boca/enzimología , Neoplasias de la Boca/patología , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/enzimología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Respir Res ; 20(1): 125, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208424

RESUMEN

BACKGROUND: Obstructive sleep apnoea (OSA) is one of the major sources of the excessive daily sleepiness, cognitive dysfunction, and it increases cardiovascular morbidity and mortality. Previous studies suggested a possible genetic influence, based on questionnaires but no objective genetic study was conducted to understand the exact variance underpinned by genetic factors. METHODS: Seventy-one Hungarian twin pairs involved from the Hungarian Twin Registry (48 monozygotic, MZ and 23 dizygotic, DZ pairs, mean age 51 ± 15 years) underwent overnight polysomnography (Somnoscreen Plus Tele PSG, Somnomedics GMBH, Germany). Apnoea hypopnea index (AHI), respiratory disturbance index (RDI) and oxygen desaturation index (ODI) were registered. Daytime sleepiness was measured with the Epworth Sleepiness Scale (ESS). Bivariate heritability analysis was applied. RESULTS: The prevalence of OSA was 41% in our study population. The heritability of the AHI, ODI and RDI ranged between 69% and 83%, while the OSA, defined by an AHI ≥5/h, was itself 73% heritable. The unshared environmental component explained the rest of the variance between 17% and 31%. Daytime sleepiness was mostly determined by the environment, and the variance was influenced in 34% by the additive genetic factors. These associations were present after additional adjustment for body mass index. CONCLUSION: OSA and the indices of OSA severity are heritable, while daytime sleepiness is mostly influenced by environmental factors. Further studies should elucidate whether close relatives of patients with OSA may benefit from early family risk based screening.


Asunto(s)
Enfermedades en Gemelos/genética , Trastornos de Somnolencia Excesiva/genética , Predisposición Genética a la Enfermedad/genética , Apnea Obstructiva del Sueño/genética , Somnolencia , Adulto , Anciano , Enfermedades en Gemelos/diagnóstico , Enfermedades en Gemelos/epidemiología , Trastornos de Somnolencia Excesiva/diagnóstico , Trastornos de Somnolencia Excesiva/epidemiología , Femenino , Predisposición Genética a la Enfermedad/epidemiología , Humanos , Hungría/epidemiología , Masculino , Persona de Mediana Edad , Polisomnografía/métodos , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/epidemiología
9.
J Org Chem ; 84(3): 1407-1420, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624063

RESUMEN

The photochemical reactions of C60 with N-(trimethylsilyl)methyl substituted and N-alkyl/aryl substituted α-aminonitriles were explored to evaluate the scope and reaction efficiency depending on the structural nature of amine substrates. The results showed that photoreactions of C60 with trimethylsilyl group containing N-alkyl amines produced predominantly both trimethylsilyl and cyano group containing trans-pyrrolidine ring fused fulleropyrrolidines in a chemo- and stereoselective manner. Interestingly, photoreactions of C60 with N-branched alkyl substituted amines led to exclusive formation of non-silyl containing cycloadducts. In contrast to those of N-alkyl substituted α-aminonitriles, photoreactions of N-(trimethylsilyl)methyl and N-aryl substituted α-aminonitriles gave rise to the formation of both trans- and cis-isomeric fulleropyrrolidines with an inefficient and non-stereoselective manner. The feasible mechanistic pathways leading to generation of fulleropyrrolidines are 1,3-dipolar cycloaddition of the azomethine ylides, generated by either a single electron transfer (SET) (under N2-purged conditions) or H atom abstraction (under O2-purged conditions) process, to fullerene C60. The stereoselectivities of photoproducts depending on the nature of amines are likely to be associated with conformational stabilities of in situ generated azoemthine ylides.

10.
Acta Biochim Biophys Sin (Shanghai) ; 51(7): 734-742, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31187116

RESUMEN

Neferine is an alkaloid extracted from a seed embryo of Nelumbo nucifera and has recently been shown to have anticancer effects in various human cancer cell lines. However, the detailed molecular mechanism of neferine-induced apoptosis has not been elucidated in renal cancer cells. In the present study, we observed that neferine induced inhibition of cell proliferation and apoptosis in Caki-1 cells in a dose-dependent manner by using MT assay and flow cytometry and that neferine-mediated apoptosis was attenuated by pretreatment with N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethyketone, a pan-caspase inhibitor. Treatments with neferine dose-dependently downregulated B cell lymphoma-2 (Bcl-2) expression at the transcriptional level determined by reverse transcriptase-polymerase chain reaction. The forced expression of Bcl-2 and p65 attenuated the neferine-mediated apoptosis in Caki-1 cells. In addition, neferine induced apoptosis by downregulating Bcl-2 and p65 expression in the other two kidney cancer cell lines determined by flow cytometry and western blot analysis. Finally, we observed that treatment with neferine induced apoptosis by inhibiting the NF-κB pathway through caspase-mediated cleavage of the p65 protein by western blot analysis. Collectively, this study demonstrated that neferine-induced apoptosis is mediated by the downregulation of Bcl-2 expression via repression of the NF-κB pathway in renal cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Bencilisoquinolinas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Transcripción ReIA/metabolismo , Apoptosis/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo/genética , Medicamentos Herbarios Chinos/farmacología , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Transcripción ReIA/genética
11.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331056

RESUMEN

MicroRNAs (miRNAs) can be used to target a variety of human malignancies by targeting their oncogenes or tumor suppressor genes. Recent evidence has shown that miRNA-1208 (miR-1208) was rarely expressed in a variety of cancer cells, suggesting the possibility that miR-1208 functions as a tumor suppressor gene. Herein, ectopic expression of miR-1208 induced the accumulation of sub-G1 populations and the cleavage of procaspase-3 and PARP, which could be prevented by pre-treatment with the pan-caspase inhibitor, Z-VAD. In addition, miR-1208 increased the susceptibility to cisplatin and TRAIL in Caki-1 cells. Luciferase reporter assay results showed that miR-1208 negatively regulates TBC1 domain containing kinase (TBCK) expression by binding to the miR-1208 binding sites in the 3'-untranslated region of TBCK. In addition, miR-1208 specifically repressed TBCK expression at the transcriptional level. In contrast, inhibition of endogenous miR-1208 by anti-miRs resulted in an increase in TBCK expression. Downregulation of TBCK induced by TBCK-specific siRNAs increased susceptibility to cisplatin and TRAIL. These findings suggest that miR-1208 acts as a tumor suppressor and targets TBCK directly, thus possessing great potential for use in renal cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Renales/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias Renales/genética , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Regiones no Traducidas 3' , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sitios de Unión , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Interferencia de ARN , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
12.
Int J Mol Sci ; 20(11)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141929

RESUMEN

Deoxypodophyllotoxin (DPT) is a cyclolignan compound that exerts anti-cancer effects against various types of cancers. DPT induces apoptosis and inhibits the growth of breast, brain, prostate, gastric, lung, and cervical tumors. In this study, we sought to determine the effect of DPT on cell proliferation, apoptosis, motility, and tumorigenesis of three colorectal cancer (CRC) cell lines: HT29, DLD1, and Caco2. DPT inhibited the proliferation of these cells. Specifically, the compound-induced mitotic arrest in CRC cells by destabilizing microtubules and activating the mitochondrial apoptotic pathway via regulation of B-cell lymphoma 2 (Bcl-2) family proteins (increasing Bcl-2 associated X (BAX) and decreasing B-cell lymphoma-extra-large (Bcl-xL)) ultimately led to caspase-mediated apoptosis. In addition, DPT inhibited tumorigenesis in vitro, and in vivo skin xenograft experiments revealed that DPT significantly decreased tumor size and tumor weight. Taken together, our results suggest DPT to be a potent compound that is suitable for further exploration as a novel chemotherapeutic for human CRC.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Podofilotoxina/análogos & derivados , Moduladores de Tubulina/farmacología , Animales , Antineoplásicos/uso terapéutico , Células CACO-2 , Neoplasias Colorrectales/metabolismo , Medicamentos Herbarios Chinos , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Podofilotoxina/farmacología , Podofilotoxina/uso terapéutico , Moduladores de Tubulina/uso terapéutico
13.
J Cell Biochem ; 119(12): 10118-10130, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30129052

RESUMEN

Oral cancer is of an aggressive malignancy that arises on oral cavity and lip, 90% of cancers histologically originated in the squamous cells. Licochalcone (LC)C has been known as natural phenolic chalconoid substances, and its origin is the root of Glycyrrhiza glabra or Glycyrrhiza inflata. LCC inhibited oral squamous cell carcinoma (OSCC) cell viability, mitochondrial function, and anchorage-independent growth in a dose-dependent manner. To investigate the ability of LCC to target Janus kinase 2 (JAK2), we performed pull-down binding assay, kinase assay, and docking simulation. The molecular docking studies were performed between JAK2 and the potent inhibitor LCC. It was shown that LCC tightly interacted with ATP-binding site of JAK2. In addition, LCC inhibited the JAK2/signal transducer and activator of transcription 3 pathway, upregulated p21, and downregulated Bcl-2, Mcl-1, and Survivin, while it disrupted mitochondrial membrane potential and subsequently caused cytochrome c release with activation of multi-caspase, eventually leading to apoptosis in HN22 and HSC4 cells. LCC elevated the protein levels of Bax, cleaved Bid and PARP, and increased Apaf-1, and this effect was reversed by LCC treatment. Our results demonstrated that treatment of OSCC cells with LCC induced the death receptor (DR)4 and DR5 expression level with the generation of reactive oxygen species and the upregulation of CHOP protein expression. Taken together, these results could provide the basis for clinical application as a new therapeutic strategy in the treatment of oral cancer.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Chalconas/farmacología , Janus Quinasa 2/genética , Neoplasias de la Boca/tratamiento farmacológico , Factor de Transcripción STAT3/genética , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Simulación del Acoplamiento Molecular , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Chemistry ; 24(22): 5765-5769, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29488264

RESUMEN

Described here is a reductive amination/hydrosilylation cascade of α,ß-unsaturated aldehydes mediated by a Lewis acidic borane catalyst. The present reaction system provides an one-pot synthetic route towards ß-silylated secondary amines that have not been accessible by other previous catalysis. Comparative 1 H NMR studies on the silylative reduction of enimines revealed that steric bulkiness of primary amine reactants strongly affects both catalytic efficiency and regioselectivity. This strategy was applicable to a broad range of substrates and amenable to one-pot gram-scale synthesis. Moreover, a diastereoselective introduction of the ß-silyl group was also found to be feasible (d.r. up to 71:29).

15.
J Cell Mol Med ; 21(11): 2720-2731, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28444875

RESUMEN

Methylglyoxal (MGO) is a reactive dicarbonyl metabolite of glucose, and its plasma levels are elevated in patients with diabetes. Studies have shown that MGO combines with the amino and sulphhydryl groups of proteins to form stable advanced glycation end products (AGEs), which are associated with vascular endothelial cell (EC) injury and may contribute to the progression of atherosclerosis. In this study, MGO induced apoptosis in a dose-dependent manner in HUVECs, which was attenuated by pre-treatment with z-VAD, a pan caspase inhibitor. Treatment with MGO increased ROS levels, followed by dose-dependent down-regulation of c-FLIPL . In addition, pre-treatment with the ROS scavenger NAC prevented the MGO-induced down-regulation of p65 and c-FLIPL , and the forced expression of c-FLIPL attenuated MGO-mediated apoptosis. Furthermore, MGO-induced apoptotic cell death in endothelium isolated from mouse aortas. Finally, MGO was found to induce apoptosis by down-regulating p65 expression at both the transcriptional and posttranslational levels, and thus, to inhibit c-FLIPL mRNA expression by suppressing NF-κB transcriptional activity. Collectively, this study showed that MGO-induced apoptosis is dependent on c-FLIPL down-regulation via ROS-mediated down-regulation of p65 expression in endothelial cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Piruvaldehído/farmacología , Factor de Transcripción ReIA/genética , Acetilcisteína/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Inhibidores de Caspasas/farmacología , Caspasas/genética , Caspasas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Técnicas de Cultivo de Tejidos , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/metabolismo
16.
Nature ; 470(7335): 498-502, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21270796

RESUMEN

Sequence-directed variations in the canonical DNA double helix structure that retain Watson-Crick base-pairing have important roles in DNA recognition, topology and nucleosome positioning. By using nuclear magnetic resonance relaxation dispersion spectroscopy in concert with steered molecular dynamics simulations, we have observed transient sequence-specific excursions away from Watson-Crick base-pairing at CA and TA steps inside canonical duplex DNA towards low-populated and short-lived A•T and G•C Hoogsteen base pairs. The observation of Hoogsteen base pairs in DNA duplexes specifically bound to transcription factors and in damaged DNA sites implies that the DNA double helix intrinsically codes for excited state Hoogsteen base pairs as a means of expanding its structural complexity beyond that which can be achieved based on Watson-Crick base-pairing. The methods presented here provide a new route for characterizing transient low-populated nucleic acid structures, which we predict will be abundant in the genome and constitute a second transient layer of the genetic code.


Asunto(s)
Emparejamiento Base , ADN/química , Secuencia de Bases , ADN/metabolismo , Código Genético , Enlace de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Teoría Cuántica , Termodinámica
17.
Nucleic Acids Res ; 43(16): 7769-78, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26250116

RESUMEN

Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson-Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine-thymine (A-T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events.


Asunto(s)
ADN Forma B/química , Secuencia Rica en At , Emparejamiento Base , Simulación de Dinámica Molecular
18.
Apoptosis ; 19(7): 1165-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24771279

RESUMEN

Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Factor Inductor de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Caspasas/metabolismo , Diosgenina/análogos & derivados , Línea Celular Tumoral , Diosgenina/farmacología , Femenino , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
19.
Eur J Med Chem ; 270: 116335, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555854

RESUMEN

Several flavonoids have been shown to exert anti-osteoporosis activity. However, the structure-activity relationship and the mechanism of anti-osteoporosis activity of flavonoids remain unknown. In this study, we prepared a series of novel homoisoflavonoid (HIF) derivatives to evaluate their inhibitory effects on osteoclastogenesis using TRAP-activity in vitro assay. Then, the preliminary structure-activity relationship was studied. Among the evaluated novel flavonoids, derivative 5g exerted the most inhibitory bioactivity on primary osteoclast differentiation without interfering with osteogenesis. It was hence selected for further in vitro, in vivo and mechanism of action investigation. Results show that 5g likely directly binds to the fibroblast growth factor receptor 1 (FGFR1), decreasing the activation of ERK1/2 and IκBα/NF-κB signaling pathways, which in turn blocks osteoclastogenesis in vitro and osteoclastic bone loss in vivo. Our study shows that homoisoflavonoid (HIF) derivatives 5g can serve as a potential novel candidate for treating osteoporosis via inhibition of FGFR1.


Asunto(s)
Resorción Ósea , Osteoporosis , Humanos , Osteoclastos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Resorción Ósea/metabolismo , Osteogénesis , FN-kappa B/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular
20.
Biomol Ther (Seoul) ; 32(4): 432-441, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38835111

RESUMEN

Systemic sclerosis is an autoimmune disease characterized by inflammatory reactions and fibrosis. Myofibroblasts are considered therapeutic targets for preventing and reversing the pathogenesis of fibrosis in systemic sclerosis. Although the mechanisms that differentiate into myofibroblasts are diverse, transforming growth factor ß (TGF-ß) is known to be a key mediator of fibrosis in systemic sclerosis. This study investigated the effects of extracellular vesicles derived from human adipose stem cells (ASC-EVs) in an in vivo systemic sclerosis model and in vitro TGF-ß1-induced dermal fibroblasts. The therapeutic effects of ASC-EVs on the in vivo systemic sclerosis model were evaluated based on dermal thickness and the number of α-smooth muscle actin (α-SMA)-expressing cells using hematoxylin and eosin staining and immunohistochemistry. Administration of ASC-EVs decreased both the dermal thickness and α-SMA expressing cell number as well as the mRNA levels of fibrotic genes, such as Acta2, Ccn2, Col1a1 and Comp. Additionally, we discovered that ASC-EVs can decrease the expression of α-SMA and CTGF and suppress the TGF-ß pathway by inhibiting the activation of SMAD2 in dermal fibroblasts induced by TGF-ß1. Finally, TGF-ß1-induced dermal fibroblasts underwent selective death through ASC-EVs treatment. These results indicate that ASC-EVs could provide a therapeutic approach for preventing and reversing systemic sclerosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA