Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 35(8): e21794, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314059

RESUMEN

While biglycan (BGN) is suggested to direct diverse signaling cascades, the effects of soluble BGN as a ligand on metabolic traits have not been studied. Herein, we tested the effects of BGN on obesity in high-fat diet (HFD)-induced obese animals and glucose metabolism, with the underlying mechanism responsible for observed effects in vitro. Our results showed that BGN administration (1 mg/kg body weight, intraperitoneally) significantly prevented HFD-induced obesity, and this was mainly attributed to reduced food intake. Also, intracerebroventricular injection of BGN reduced food intake and body weight. The underlying mechanism includes modulation of neuropeptides gene expression involved in appetite in the hypothalamus in vitro and in vivo. In addition, BGN regulates glucose metabolism as shown by improved glucose tolerance in mice as well as AMPK/AKT dual pathway-driven enhanced glucose uptake and GLUT4 translocation in L6 myoblast cells. In conclusion, our results suggest BGN as a potential therapeutic target to treat risk factors for metabolic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Biglicano/administración & dosificación , Glucosa/metabolismo , Músculo Esquelético/efectos de los fármacos , Obesidad/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular , Conducta Alimentaria , Ratones , Ratones Endogámicos ICR , Ratas
2.
Molecules ; 27(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35566109

RESUMEN

Thiourea was introduced into (R,R)-1,2-diphenylethylenediamine as an organocatalyst to promote the reaction between isobutyraldehydes and maleimides. Enantioselective Michael addition reaction was carried out as an eco-friendly method using water as the solvent. As a result of the reaction between isobutyraldehyde and maleimide, ≥97% yield and 99% enantioselectivity were obtained at a low catalyst loading of 0.01 mol%. The solvent effect can be explained by theoretical calculations that indicate the participation of a transition state, in which the CF3 substituent of the catalyst is a hydrogen bond activated by the surrounding water molecules. This discovery enabled the use of low catalyst loading in the organic reactions of chiral substances for pharmaceutical applications. Furthermore, a solvent effect for Michael reaction of the organocatalysts was proposed, and the organic reaction mechanisms were determined through quantum calculations.


Asunto(s)
Agua , Aldehídos , Maleimidas/química , Solventes , Estereoisomerismo
3.
J Cell Mol Med ; 25(18): 8725-8733, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34382326

RESUMEN

Ectopic fat accumulation in the kidneys causes oxidative stress, inflammation and cell death. Dehydrozingerone (DHZ) is a curcumin analog that exhibits antitumour, antioxidant and antidiabetic effects. However, the efficacy of DHZ in diabetic nephropathy (DN) is unknown. Here, we verified the efficacy of DHZ on DN. We divided the experimental animals into three groups: regular diet, 60% high-fat diet (HFD) and HFD with DHZ for 12 weeks. We analysed levels of renal triglycerides and urinary albumin and albumin-creatinine ratio, renal morphological changes and molecular changes via real-time polymerase chain reaction and immunoblotting. Furthermore, high glucose (HG)- or palmitate (PA)-stimulated mouse mesangial cells or mouse podocytes were treated with DHZ for 24 h. As a result, DHZ markedly reduced renal glycerol accumulation and albuminuria excretion through improvement of thickened glomerular basement membrane, podocyte loss and slit diaphragm reduction. In the renal cortex in the HFD group, phospho-AMPK and nephrin expression reduced, whereas arginase 2 and CD68 expression increased; however, these changes were recovered after DHZ administration. Increased reactive oxygen species (ROS) stimulated by HG or PA in podocytes was inhibited by DHZ treatment. Collectively, these findings indicate that DHZ ameliorates DN via inhibits of lipotoxicity-induced inflammation and ROS formation.


Asunto(s)
Antioxidantes/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Estirenos/farmacología , Animales , Línea Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
4.
FASEB J ; 34(10): 13445-13460, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32816366

RESUMEN

We investigated the effect of chitinase-3-like protein 1 (CHI3L1) on glucose metabolism and its underlying mechanisms in skeletal muscle cells, and evaluated whether the observed effects are relevant in humans. CHI3L1 was associated with increased glucose uptake in skeletal muscles in an AMP-activated protein kinase (AMPK)-dependent manner, and with increased intracellular calcium levels via PAR2. The improvement in glucose metabolism observed in an intraperitoneal glucose tolerance test on male C57BL/6J mice supported this association. Inhibition of the CaMKK was associated with suppression of CHI3L1-mediated glucose uptake. Additionally, CHI3L1 was found to influence glucose uptake through the PI3K/AKT pathway. Results suggested that CHI3L1 stimulated the phosphorylation of AS160 and p38 MAPK downstream of AMPK and AKT, and the resultant GLUT4 translocation. In primary myoblast cells, stimulation of AMPK and AKT was observed in response to CHI3L1, underscoring the biological relevance of CHI3L1. CHI3L1 levels were elevated in cells under conditions that mimic exercise in vitro and in exercised mice in vivo, indicating that CHI3L1 is secreted during muscle contraction. Finally, similar associations between CHI3L1 and metabolic parameters were observed in humans alongside genotype associations between CHI3L1 and diabetes at the population level. CHI3L1 may be a potential therapeutic target for the treatment of diabetes.


Asunto(s)
Proteína 1 Similar a Quitinasa-3 , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Músculo Esquelético , Proteínas Quinasas Activadas por AMP/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular , Proteína 1 Similar a Quitinasa-3/sangre , Proteína 1 Similar a Quitinasa-3/fisiología , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
5.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445775

RESUMEN

Accelerating wound healing with minimized bacterial infection has become a topic of interest in the development of the new generation of tissue bio-adhesives. In this study, we fabricated a hydrogel system (MGC-g-CD-ic-TCS) consisting of triclosan (TCS)-complexed beta-cyclodextrin (ß-CD)-conjugated methacrylated glycol chitosan (MGC) as an antibacterial tissue adhesive. Proton nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC) results showed the inclusion complex formation between MGC-g-CD and TCS. The increase of storage modulus (G') of MGC-g-CD-ic-TCS after visible light irradiation for 200 s indicated its hydrogelation. The swollen hydrogel in aqueous solution resulted in two release behaviors of an initial burst and sustained release. Importantly, in vitro and in vivo results indicated that MGC-g-CD-ic-TCS inhibited bacterial infection and improved wound healing, suggesting its high potential application as an antibacterial tissue bio-adhesive.


Asunto(s)
Adhesivos/química , Quitosano/química , Glicoles/química , Hidrogeles/química , Triclosán/química , beta-Ciclodextrinas/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Luz , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Cicatrización de Heridas/efectos de los fármacos
6.
FASEB J ; 33(12): 14825-14840, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31670977

RESUMEN

ATPase inhibitory factor 1 (IF1) is an ATP synthase-interacting protein that suppresses the hydrolysis activity of ATP synthase. In this study, we observed that the expression of IF1 was up-regulated in response to electrical pulse stimulation of skeletal muscle cells and in exercized mice and healthy men. IF1 stimulates glucose uptake via AMPK in skeletal muscle cells and primary cultured myoblasts. Reactive oxygen species and Rac family small GTPase 1 (Rac1) function in the upstream and downstream of AMPK, respectively, in IF1-mediated glucose uptake. In diabetic animal models, the administration of recombinant IF1 improved glucose tolerance and down-regulated blood glucose level. In addition, IF1 inhibits ATP hydrolysis by ß-F1-ATPase in plasma membrane, thereby increasing extracellular ATP and activating the protein kinase B (Akt) pathway, ultimately leading to glucose uptake. Thus, we suggest that IF1 is a novel myokine and propose a mechanism by which AMPK and Akt contribute independently to IF1-mediated improvement of glucose tolerance impairment. These results demonstrate the importance of IF1 as a potential antidiabetic agent.-Lee, H. J., Moon, J., Chung, I., Chung, J. H., Park, C., Lee, J. O., Han, J. A., Kang, M. J., Yoo, E. H., Kwak, S.-Y., Jo, G., Park, W., Park, J., Kim, K. M., Lim, S., Ngoei, K. R. W., Ling, N. X. Y., Oakhill, J. S., Galic, S., Murray-Segal, L., Kemp, B. E., Mantzoros, C. S., Krauss, R. M., Shin, M.-J., Kim, H. S. ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways.


Asunto(s)
Glucosa/metabolismo , Mioblastos/metabolismo , Proteínas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Trifosfato/metabolismo , Adulto , Animales , Línea Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/metabolismo , Proteínas/genética , Proteínas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes/uso terapéutico , Proteína Inhibidora ATPasa
7.
Acta Radiol ; 61(11): 1545-1552, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32077302

RESUMEN

BACKGROUND: Coronal and sagittal views of magnetic resonance imaging (MRI) were used to determine rotator cuff tear size and fatty infiltration, but these images were not enough to identify the tear shape. PURPOSE: To correlate the preoperative axial MRI views and arthroscopic surgical findings to identify the two-dimensional shapes in rotator cuff tears. MATERIAL AND METHODS: This study included 166 patients who underwent arthroscopic repair between 2015 and 2018. Preoperative coronal, sagittal, and axial MRI views were evaluated for tear size and geographic configuration in axial sections, and the length and the width were measured and were matched with arthroscopic surgical views by lateral portals. RESULTS: The agreement of axial MRI views with the arthroscopic view was 88.0% in crescent, 97.2% in longitudinal, 78.6% in massive, and 100% in rotator cuff tear arthropathy. The mean agreement rate of axial MRI views with arthroscopic view was 81.9%. Mean mediolateral and anteroposterior tear sizes on axial MRI were 16.68 mm and 19.33 mm, respectively. Mean mediolateral and anteroposterior tear sizes by arthroscopic view were 21.49 mm and 21.04 mm, respectively. Tear sizes by MRI axial images were 71.3% of arthroscopic view. SST/IST degenerative changes were noted in most patients with massive tears and rotator cuff arthropathy (P = 0.001). CONCLUSION: Rotator cuff tear shape on preoperative axial MRI view had close agreement (81.9%) with arthroscopic findings by lateral portal, and tear size by preoperative axial MRI views was 71.3% of that of arthroscopic view. Axial MRI views helped to predict the geometric tear shape of rotator cuff tears.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Cuidados Preoperatorios/métodos , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Manguito de los Rotadores/diagnóstico por imagen , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/cirugía
8.
Int J Mol Sci ; 21(10)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456197

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-ß (Aß) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of non-pharmacological interventions to prevent or treat AD has gained attention. Low-dose ionizing radiation (LDIR) is a non-pharmacological intervention which is currently being evaluated in clinical trials for AD patients. However, the mechanisms underlying the therapeutic effects of LDIR therapy have not yet been established. In this study, we examined the effect of LDIR on Aß accumulation and Aß-mediated pathology. To investigate the short-term effects of low-moderate dose ionizing radiation (LMDIR), a total of 9 Gy (1.8 Gy per fraction for five times) were radiated to 4-month-old 5XFAD mice, an Aß-overexpressing transgenic mouse model of AD, and then sacrificed at 4 days after last exposure to LMDIR. Comparing sham-exposed and LMDIR-exposed 5XFAD mice indicated that short-term exposure to LMDIR did not affect Aß accumulation in the brain, but significantly ameliorated synaptic degeneration, neuronal loss, and neuroinflammation in the hippocampal formation and cerebral cortex. In addition, a direct neuroprotective effect was confirmed in SH-SY5Y neuronal cells treated with Aß1-42 (2 µM) after single irradiation (1 Gy). In BV-2 microglial cells exposed to Aß and/or LMDIR, LMDIR therapy significantly inhibited the production of pro-inflammatory molecules and activation of the nuclear factor-kappa B (NF-κB) pathway. These results indicate that LMDIR directly ameliorated neurodegeneration and neuroinflammation in vivo and in vitro. Collectively, our findings suggest that the therapeutic benefits of LMDIR in AD may be mediated by its neuroprotective and anti-inflammatory effects.


Asunto(s)
Enfermedad de Alzheimer/radioterapia , Irradiación Craneana/métodos , Animales , Línea Celular Tumoral , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de la radiación , Femenino , Humanos , Ratones , FN-kappa B/metabolismo , Dosis de Radiación , Radiación Ionizante
9.
Int J Mol Sci ; 21(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486013

RESUMEN

It has been reported that damage to the mitochondria affects the progression of Alzheimer's disease (AD), and that mitochondrial dysfunction is improved by omega-3. However, no animal or cell model studies have confirmed whether omega-3 inhibits AD pathology related to mitochondria deficits. In this study, we aimed to (1) identify mitigating effects of endogenous omega-3 on mitochondrial deficits and AD pathology induced by amyloid beta (Aß) in fat-1 mice, a transgenic omega-3 polyunsaturated fatty acids (PUFAs)-producing animal; (2) identify if docosahexaenoic acid (DHA) improves mitochondrial deficits induced by Aß in HT22 cells; and (3) verify improvement effects of DHA administration on mitochondrial deficits and AD pathology in B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax (5XFAD), a transgenic Aß-overexpressing model. We found that omega-3 PUFAs significantly improved Aß-induced mitochondrial pathology in fat-1 mice. In addition, our in vitro and in vivo findings demonstrate that DHA attenuated AD-associated pathologies, such as mitochondrial impairment, Aß accumulation, neuroinflammation, neuronal loss, and impairment of adult hippocampal neurogenesis.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Mitocondrias/patología , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Supervivencia Celular , Femenino , Genotipo , Hipocampo/metabolismo , Hipocampo/patología , Procesamiento de Imagen Asistido por Computador , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Neurogénesis , Neuronas/metabolismo
10.
Breast Cancer Res ; 21(1): 115, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640742

RESUMEN

BACKGROUND: Chemotherapy is a standard therapeutic regimen to treat triple-negative breast cancer (TNBC); however, chemotherapy alone does not result in significant improvement and often leads to drug resistance in patients. In contrast, combination therapy has proven to be an effective strategy for TNBC treatment. Whether metformin enhances the anticancer effects of cisplatin and prevents cisplatin resistance in TNBC cells has not been reported. METHODS: Cell viability, wounding healing, and invasion assays were performed on Hs 578T and MDA-MB-231 human TNBC cell lines to demonstrate the anticancer effects of combined cisplatin and metformin treatment compared to treatment with cisplatin alone. Western blotting and immunofluorescence were used to determine the expression of RAD51 and gamma-H2AX. In an in vivo 4T1 murine breast cancer model, a synergistic anticancer effect of metformin and cisplatin was observed. RESULTS: Cisplatin combined with metformin decreased cell viability and metastatic effect more than cisplatin alone. Metformin suppressed cisplatin-mediated RAD51 upregulation by decreasing RAD51 protein stability and increasing its ubiquitination. In contrast, cisplatin increased RAD51 expression in an ERK-dependent manner. In addition, metformin also increased cisplatin-induced phosphorylation of γ-H2AX. Overexpression of RAD51 blocked the metformin-induced inhibition of cell migration and invasion, while RAD51 knockdown enhanced cisplatin activity. Moreover, the combination of metformin and cisplatin exhibited a synergistic anticancer effect in an orthotopic murine model of 4T1 breast cancer in vivo. CONCLUSIONS: Metformin enhances anticancer effect of cisplatin by downregulating RAD51 expression, which represents a novel therapeutic target in TNBC management.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Metformina/farmacología , Recombinasa Rad51/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Metformina/administración & dosificación , Ratones Endogámicos BALB C , Recombinasa Rad51/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
11.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G811-G823, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604029

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is very prevalent worldwide and is associated with insulin resistance and metabolic syndrome. Stress is a physiological and biological response to maintain homeostasis of the body against stressors while severe stress response is an important contributor to various illnesses, including metabolic syndrome and brain disorders. We have evaluated the effects of intermittent restraint stress on NAFLD in a high-fat diet (HFD)-fed mouse model. C57/BL6 mice had free access to a 60% HFD for 8 wk, with or without intermittent restraint stress (3 h) conducted three times a week. HFD administration increased fat accumulation in liver tissues. Unlike the stressed standard diet group, the levels of hepatic total cholesterol and triglycerides were significantly ameliorated in the HFD with stress group compared with the HFD alone group. These beneficial results were in accordance with serum levels of liver enzymes (aspartate transaminase, alanine transaminase) and hepatic levels of TNF-α and oxidative stress parameters (reactive oxygen species, nitric oxide, and malondialdehyde). The intermittent restraint stress significantly attenuated the HFD-derived alterations in serum insulin levels, hepatic protein kinase B activity, and gene expression, especially related to lipogenesis. This intermittent restraint stress also elevated the serum epinephrine concentration and activated the adrenergic receptor ß2 or ß3 in livers or white adipose tissue (WAT). Activation of energy expenditure markers (uncoupling protein 1, peroxisome proliferator-activated receptor-γ coactivator-1α) in brown adipose tissue and the browning of WAT were also observed in the HFD with stress group. Taken together, our findings showed the beneficial effects of sympathetic activation by intermittent restraint stress on HFD-induced hepatic steatosis and partial inflammation.NEW & NOTEWORTHY In modern society, stress is a part of daily life, and a certain level of stress is inevitable to most of the general population. Uncontrolled severe stress is obviously harmful; however, certain kind/level of stress could be beneficial on lipid metabolism via sympathetic activation. Our data suggest that a sympathetic activation by intermittent restraint stress could play a positive role in maintaining the balance of hepatic lipid metabolism, especially under high-fat diet conditions.


Asunto(s)
Inflamación/metabolismo , Lipogénesis/fisiología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Fisiológico/fisiología , Sistema Nervioso Simpático/fisiología , Tejido Adiposo/metabolismo , Animales , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Endogámicos C57BL , Receptores Adrenérgicos beta 2/análisis , Triglicéridos/metabolismo
12.
Int J Neuropsychopharmacol ; 22(6): 402-414, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31125414

RESUMEN

BACKGROUND: Leukemia inhibitory factor, a novel myokine, is known to be associated with neural function, but the underlying molecular mechanism remains unclear. METHODS: HT-22 mouse hippocampal cells, primary hippocampal cells, and Drosophila Alzheimer's disease model were used to determine the effect of leukemia inhibitory factor on neurons. Immunoblot analysis and immunofluorescence method were used to analyze biological mechanism. RESULTS: Leukemia inhibitory factor increased Akt phosphorylation in a phosphoinositide-3-kinase-dependent manner in hippocampal cells. Leukemia inhibitory factor also increased the phosphorylation of the mammalian target of rapamycin and the downstream S6K. Leukemia inhibitory factor stimulated the phosphorylation of signal transducer and activator of transcription via extracellular signal-regulated kinases. Leukemia inhibitory factor increased c-fos expression through both Akt and extracellular signal-regulated kinases. Leukemia inhibitory factor blocked amyloid ß-induced neural viability suppression and inhibited amyloid ß-induced glucose uptake impairment through the block of amyloid ß-mediated insulin receptor downregulation. Leukemia inhibitory factor blocked amyloid ß-mediated induction of the autophagy marker, microtubule-associated protein 1A/1B-light chain 3. Additionally, in primary prepared hippocampal cells, leukemia inhibitory factor stimulated Akt and extracellular signal-regulated kinase, demonstrating that leukemia inhibitory factor has physiological relevance in vivo. Suppression of the autophagy marker, light chain 3II, by leukemia inhibitory factor was observed in a Drosophila model of Alzheimer's disease. CONCLUSIONS: These results demonstrate that leukemia inhibitory factor protects against amyloid ß-induced neurotoxicity via Akt/extracellular signal-regulated kinase-mediated c-fos induction, and thus suggest that leukemia inhibitory factor is a potential drug for Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Hipocampo/citología , Factor Inhibidor de Leucemia/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/toxicidad , Animales , Animales Modificados Genéticamente , Células Cultivadas , Drosophila , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 3/biosíntesis , Hipocampo/metabolismo , Factor Inhibidor de Leucemia/biosíntesis , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/biosíntesis , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Receptor de Insulina/biosíntesis , Receptor de Insulina/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
13.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861329

RESUMEN

Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.


Asunto(s)
Células Madre Adultas/metabolismo , Ciclo Celular/genética , Hipocampo/citología , Células-Madre Neurales/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Células Madre Adultas/efectos de los fármacos , Amodiaquina/farmacología , Animales , Biomarcadores , Ciclo Celular/efectos de los fármacos , Proliferación Celular , Giro Dentado/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Ratones , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Ratas
14.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557807

RESUMEN

EPA, an omega-3 polyunsaturated fatty acid, exerts beneficial effects on human health. However, the molecular mechanisms underlying EPA function are poorly understood. The object was to illuminate molecular mechanism underlying EPA's role. Here, 1H-NMR-based metabolic analysis showed enhanced branched-chain amino acids (BCAAs) and lactate following EPA treatment in skeletal muscle cells. EPA regulated mitochondrial oxygen consumption rate. Furthermore, EPA induced calcium/calmodulin-dependent protein kinase kinase (CaMKK) through the generation of intracellular calcium. This induced the phosphorylation of AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38 MAPK) that led to glucose uptake, and the translocation of glucose transporter type 4 (GLUT4) in muscles. In conclusion, EPA exerts benign effects on glucose through the activation of AMPK-p38 MAPK signaling pathways in skeletal muscles.


Asunto(s)
Ácido Eicosapentaenoico/farmacología , Glucosa/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Consumo de Oxígeno/efectos de los fármacos
15.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234321

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aß) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red ginseng (RG) has been demonstrated to have beneficial effects on AD pathology. However, there is no evidence showing whether RG extract (RGE) can inhibit the mitochondrial deficit-mediated pathology in the experimental models of AD. The effects of RGE on Aß-mediated mitochondrial deficiency were investigated in both HT22 mouse hippocampal neuronal cells and the brains of 5XFAD Aß-overexpressing transgenic mice. To examine whether RGE can affect mitochondria-related pathology, we used immunohistostaining to study the effects of RGE on Aß accumulation, neuroinflammation, neurodegeneration, and impaired adult hippocampal neurogenesis in hippocampal formation of 5XFAD mice. In vitro and in vivo findings indicated that RGE significantly improves Aß-induced mitochondrial pathology. In addition, RGE significantly ameliorated AD-related pathology, such as Aß deposition, gliosis, and neuronal loss, and deficits in adult hippocampal neurogenesis in brains with AD. Our results suggest that RGE may be a mitochondria-targeting agent for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Mitocondrias/efectos de los fármacos , Panax , Preparaciones de Plantas/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Panax/química , Preparaciones de Plantas/química
16.
J Vasc Interv Radiol ; 29(4): 575-583, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29477625

RESUMEN

PURPOSE: To investigate potential of chitosan hydrogel microparticles (CHI) for treatment of VX2 carcinoma. MATERIALS AND METHODS: Two weeks after liver VX2 implantation, contrast-enhanced computerized tomographic scanning was conducted. Rabbits (n = 2) with successful tumor growth were treated with different sizes of 99mTc-labeled CHI (60-80 µm and 100-120 µm) via intra-arterial hepatic catheterization. Liver distribution of 99mTc-labeled CHI was determined by means of autoradiography, a radiation-based photographic technique. In the next part of this study, therapeutic effectiveness was examined with the use of CHI with the size range of 60-80 µm (n = 11). Tumor growth response and levels of blood liver enzymes were studied at baseline and 1 and 2 weeks after CHI treatment. RESULTS: Successful tumor growth was confirmed in all rabbits (24/24). Intrahepatic CHI with the size range of 60-80 µm resulted in liver localization in more close proximity to tumor nodule versus 100-120 µm. Baseline tumor volume was 1,909 ± 575 mm3 in animals receiving CHI versus 1,831 ± 249 mm3 in control animals (P = .342). In control animals, tumor volume markedly increased by 1,544 ± 512% at 2 weeks after sham operation versus baseline. In animals receiving CHI, tumor volume remained relatively unchanged (54 ± 6% increase; P = .007 vs control). Levels of blood aspartate transaminase (AST) and alanine transaminase (ALT) in animals receiving CHI increased 1 week after treatment (P = .032 vs control for AST; P = .000 vs control for ALT), but returned to control levels at 2 weeks. CONCLUSIONS: CHI embolization suppressed tumor growth without appreciable damages in liver function.


Asunto(s)
Quitosano/farmacología , Hidrogeles/farmacología , Neoplasias Hepáticas Experimentales/terapia , Angiografía , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Embolización Terapéutica , Pruebas de Función Hepática , Conejos , Tomografía Computarizada por Rayos X , Carga Tumoral
17.
BMC Cell Biol ; 18(1): 14, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28241740

RESUMEN

BACKGROUND: DNA hypermethylation is a key epigenetic mechanism for the silencing of many genes in cancer. Hinokitiol, a tropolone-related natural compound, is known to induce apoptosis and cell cycle arrest and has anti-inflammatory and anti-tumor activities. However, the relationship between hinokitiol and DNA methylation is not clear. The aim of our study was to explore whether hinokitiol has an inhibitory ability on the DNA methylation in colon cancer cells. RESULTS: MTT data showed that hinokitiol had higher sensitivity in colon cancer cells, HCT-116 and SW480, than in normal colon cells, CCD18Co. Hinokitiol reduced DNA methyltransferase 1 (DNMT1) and ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression in HCT-116 cells. In addition, the expression of ten-eleven translocation protein 1 (TET1), a known DNA demethylation initiator, was increased by hinokitiol treatment. ELISA and FACS data showed that hinokitiol increased the 5-hydroxymethylcytosine (5hmC) level in the both colon cancer cells, but 5-methylcytosine (5mC) level was not changed. Furthermore, hinokitiol significantly restored mRNA expression of O6-methylguanine DNA methyltransferase (MGMT), carbohydrate sulfotransferase 10 (CHST10), and B-cell translocation gene 4 (BTG4) concomitant with reduction of methylation status in HCT-116 cells. CONCLUSIONS: These results indicate that hinokitiol may exert DNA demethylation by inhibiting the expression of DNMT1 and UHRF1 in colon cancer cells.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Neoplasias del Colon/genética , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Metilación de ADN/efectos de los fármacos , Monoterpenos/farmacología , Tropolona/análogos & derivados , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Oxigenasas de Función Mixta/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Tropolona/farmacología , Ubiquitina-Proteína Ligasas
18.
Eur Spine J ; 26(11): 2851-2857, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28744807

RESUMEN

PURPOSE: Tranexamic acid is a proven drug used for reduction of intraoperative blood loss in spinal surgery. However, optimal dosing considering risk/benefits is not well established owing to the heterogeneity in patient selection and surgical procedures of previous studies. This study aimed to evaluate the effectiveness and safety of various tranexamic acid regimens in reducing perioperative blood loss in single-level posterior lumbar interbody fusion (PLIF). METHODS: Patients were randomly grouped into three different interventions: low-dose tranexamic acid (LD), high-dose tranexamic acid (HD), and placebo-controlled (PC) groups. The HD and LD groups received 10 and 5 mg/kg of bolus loading dose and 2 and 1 mg/kg of continuous infusion until 5 h after surgery, respectively. Data on patient demographics and preoperative and 24-h postoperative laboratory values were collected. Outcome parameters include intraoperative blood loss, 24-h postoperative blood loss, and blood loss during removal of the last drain. RESULTS: Seventy-two patients (mean age 63.3 ± 7.6 years) showed similar baseline characteristics. Intraoperatively, blood loss was reduced by the administration of tranexamic acid (P = 0.04), contributed predominantly by a difference between the LD and HD groups (123 mL; P < 0.01). The 24-h postoperative blood loss was reduced (P < 0.01), contributed predominantly by a difference between the PC and LD groups (144 mL; P = 0.02). During the removal of the last drain, statistical difference was found between the PC and HD groups (125 mL; P = 0.00). No complications or side effects from tranexamic acid use were noted. CONCLUSION: Tranexamic acid administration for single-level PLIF was effective and safe in reducing perioperative blood loss in a dose-dependent manner. An HD regimen comprising 10 mg/kg of bolus loading dose and 2 mg/kg/h of continuous infusion is recommended. LEVEL OF EVIDENCE: Level 1 study according to Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence.


Asunto(s)
Antifibrinolíticos , Pérdida de Sangre Quirúrgica , Fusión Vertebral , Ácido Tranexámico , Anciano , Antifibrinolíticos/administración & dosificación , Antifibrinolíticos/uso terapéutico , Pérdida de Sangre Quirúrgica/prevención & control , Pérdida de Sangre Quirúrgica/estadística & datos numéricos , Humanos , Persona de Mediana Edad , Hemorragia Posoperatoria , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Fusión Vertebral/estadística & datos numéricos , Ácido Tranexámico/administración & dosificación , Ácido Tranexámico/uso terapéutico
19.
J Biol Chem ; 290(33): 20438-47, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26134561

RESUMEN

Docosahexaenoic acid (DHA) is an endogenous ligand of G protein-coupled receptor 120 (GPR120). However, the mechanisms underlying DHA action are poorly understood. In this study, DHA stimulated glucose uptake in the skeletal muscles in an AMP-activated protein kinase (AMPK)-dependent manner. GPR120-mediated increase in intracellular Ca(2+) was critical for DHA-mediated AMPK phosphorylation and glucose uptake. In addition, DHA stimulated GLUT4 translocation AMPK-dependently. Inhibition of AMPK and Ca(2+)/calmodulin-dependent protein kinase kinase blocked DHA-induced glucose uptake. DHA and GW9508, a GPR120 agonist, increased GPR120 expression. DHA-mediated glucose uptake was not observed in GPR120 knockdown conditions. DHA increased AMPK phosphorylation, glucose uptake, and intracellular Ca(2+) concentration in primary cultured myoblasts. Taken together, these results indicated that the beneficial metabolic role of DHA was attributed to its ability to regulate glucose via the GPR120-mediated AMPK pathway in the skeletal muscles.


Asunto(s)
Adenilato Quinasa/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Glucosa/metabolismo , Ligandos , Ratones , Músculo Esquelético/enzimología , Fosforilación , Ratas
20.
Nephrol Dial Transplant ; 31(3): 391-400, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26567248

RESUMEN

BACKGROUND: Hyperglycemia-induced endoplasmic reticulum (ER) stress and oxidative stress could be causes of renal fibrosis in diabetes. Oleanolic acid (OA) naturally occurs in fruits and vegetables. It has anti-inflammatory, antihyperlipidemic and antioxidant effects. N-acetylcysteine (NAC) is a precursor of glutathione, which has a strong antioxidant effect in the body. In this study, we investigated the therapeutic effects of OA and NAC in diabetic nephropathy (DN). METHODS: Otsuka Long-Evans Tokushima Fatty rats were treated with OA (100 mg/kg/day) or NAC (300 mg/kg/day) for 20 weeks by oral gavage. RESULTS: The OA or NAC administration increased blood insulin secretion and superoxide dismutase levels, and decreased triglycerides and urinary albumin/creatinine levels. In the kidney, the damaged renal structure recovered with OA or NAC administration, through an increase in nephrin and endothelial selective adhesion molecules and a decrease in transforming growth factor-ß/p-smad2/3 and ER stress. Reactive oxygen species and ER stress were increased by high glucose and ER stress inducers in cultured mesangial cells, and these levels recovered with OA (5.0 µM) or NAC (2.5 mM) treatment. CONCLUSION: The findings in this study suggest that OA and NAC have therapeutic effects for DN through an antioxidant effect and ER stress reduction.


Asunto(s)
Acetilcisteína/uso terapéutico , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Ratas , Ratas Endogámicas OLETF , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA