Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(10): e22529, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36036554

RESUMEN

Hepatic fibrosis occurs in response to prolonged tissue injury in the liver, which results in abnormal accumulation of extracellular matrix. Hepatic stellate cells (HSCs) have been suggested to play a major role in liver fibrosis. However, the molecular mechanisms remain incompletely understood. Sirtuin 6 (SIRT6), an NAD+ -dependent deacetylase, has been previously implicated in the regulation of the transforming growth factor ß (TGFß)-SMAD3 pathway that plays a significant role in liver fibrosis. In this work, we aimed to identify other important players during hepatic fibrogenesis, which are modulated by SIRT6. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ or WWTR1), key players in the Hippo pathway, have been implicated in the promotion of hepatic fibrosis. Our data show that HSC-specific Sirt6 knockout mice are more susceptible to high-fat-cholesterol-cholate diet-induced hepatic fibrosis than their wildtype counterparts. Our signaling analyses suggest that in addition to the TGFß-SMAD3 pathway, YAP and TAZ are also highly activated in the SIRT6-deficient HSCs. As it is not clear how SIRT6 might regulate YAP and TAZ, we have decided to elucidate the mechanism underlying the regulation of YAP and TAZ by SIRT6 in HSCs. Overexpression or knockdown of SIRT6 corroborates the role of SIRT6 in the negative regulation of YAP and TAZ. Further biochemical analyses reveal that SIRT6 deacetylates YAP and TAZ and reprograms the composition of the TEA domain transcription factor complex to suppress their downstream target genes, particularly those involved in hepatic fibrosis. In conclusion, our data suggest that SIRT6 plays a critical role in the regulation of the Hippo pathway to protect against hepatic fibrosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Sirtuinas , Animales , Proteínas de Ciclo Celular , Cirrosis Hepática , Ratones , Fosfoproteínas , Factor de Crecimiento Transformador beta
2.
Nucleic Acids Res ; 49(10): 5726-5742, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34023907

RESUMEN

Appropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Estrés Fisiológico/genética , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Codón/genética , Ontología de Genes , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Piperidinas/administración & dosificación , Piperidinas/farmacología , Polirribosomas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Inhibidores de la Síntesis de la Proteína/farmacología , Quinazolinonas/administración & dosificación , Quinazolinonas/farmacología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
3.
Hepatology ; 71(1): 76-92, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31215672

RESUMEN

Sestrin 3 (Sesn3) belongs to the three-member sestrin protein family. Sestrins have been implicated in antioxidative stress, adenosine monophosphate-activated protein kinase and mammalian target of rapamycin signal transduction, and metabolic homeostasis. However, the role of Sesn3 in the development of nonalcoholic steatohepatitis (NASH) has not been previously studied. In this work, we generated Sesn3 whole-body knockout and liver-specific transgenic mice to investigate the hepatic function of Sesn3 in diet-induced NASH. With only 4 weeks of dietary treatment, Sesn3 knockout mice developed severe NASH phenotype as characterized by hepatic steatosis, inflammation, and fibrosis. Strikingly, after 8-week feeding with a NASH-inducing diet, Sesn3 transgenic mice were largely protected against NASH development. Transcriptomic analysis revealed that multiple extracellular matrix-related processes were up-regulated, including transforming growth factor ß (TGF-ß) signaling and collagen production. Further biochemical and cell biological analyses have illustrated a critical control of the TGF-ß-mothers against decapentaplegic homolog (Smad) pathway by Sesn3 at the TGF-ß receptor and Smad3 levels. First, Sesn3 inhibits the TGF-ß receptor through an interaction with Smad7; second, Sesn3 directly inhibits the Smad3 function through protein-protein interaction and cytosolic retention. Conclusion: Sesn3 is a critical regulator of the extracellular matrix and hepatic fibrosis by suppression of TGF-ß-Smad3 signaling.


Asunto(s)
Dieta/efectos adversos , Proteínas de Choque Térmico/fisiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos
4.
J Hepatol ; 71(5): 960-969, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31295533

RESUMEN

BACKGROUND & AIMS: As a nicotinamide adenine dinucleotide-dependent deacetylase and a key epigenetic regulator, sirtuin 6 (SIRT6) has been implicated in the regulation of metabolism, DNA repair, and inflammation. However, the role of SIRT6 in alcohol-related liver disease (ALD) remains unclear. The aim of this study was to investigate the function and mechanism of SIRT6 in ALD pathogenesis. METHODS: We developed and characterized Sirt6 knockout (KO) and transgenic mouse models that were treated with either control or ethanol diet. Hepatic steatosis, inflammation, and oxidative stress were analyzed using biochemical and histological methods. Gene regulation was analyzed by luciferase reporter and chromatin immunoprecipitation assays. RESULTS: The Sirt6 KO mice developed severe liver injury characterized by a remarkable increase of oxidative stress and inflammation, whereas the Sirt6 transgenic mice were protected from ALD via normalization of hepatic lipids, inflammatory response, and oxidative stress. Our molecular analysis has identified a number of novel Sirt6-regulated genes that are involved in antioxidative stress, including metallothionein 1 and 2 (Mt1 and Mt2). Mt1/2 genes were downregulated in the livers of Sirt6 KO mice and patients with alcoholic hepatitis. Overexpression of Mt1 in the liver of Sirt6 KO mice improved ALD by reducing hepatic oxidative stress and inflammation. We also identified a critical link between SIRT6 and metal regulatory transcription factor 1 (Mtf1) via a physical interaction and functional coactivation. Mt1/2 promoter reporter assays showed a strong synergistic effect of SIRT6 on the transcriptional activity of Mtf1. CONCLUSIONS: Our data suggest that SIRT6 plays a critical protective role against ALD and it may serve as a potential therapeutic target for ALD. LAY SUMMARY: The liver, the primary organ for ethanol metabolism, can be damaged by the byproducts of ethanol metabolism, including reactive oxygen species. In this study, we have identified a key epigenetic regulator SIRT6 that plays a critical role in protecting the liver from oxidative stress-induced liver injury. Thus, our data suggest that SIRT6 may be a potential therapeutic target for alcohol-related liver disease.


Asunto(s)
Epigénesis Genética/genética , Etanol/metabolismo , Hepatopatías Alcohólicas/metabolismo , Estrés Oxidativo/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Adulto , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Etanol/efectos adversos , Hígado Graso/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G811-G823, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604029

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is very prevalent worldwide and is associated with insulin resistance and metabolic syndrome. Stress is a physiological and biological response to maintain homeostasis of the body against stressors while severe stress response is an important contributor to various illnesses, including metabolic syndrome and brain disorders. We have evaluated the effects of intermittent restraint stress on NAFLD in a high-fat diet (HFD)-fed mouse model. C57/BL6 mice had free access to a 60% HFD for 8 wk, with or without intermittent restraint stress (3 h) conducted three times a week. HFD administration increased fat accumulation in liver tissues. Unlike the stressed standard diet group, the levels of hepatic total cholesterol and triglycerides were significantly ameliorated in the HFD with stress group compared with the HFD alone group. These beneficial results were in accordance with serum levels of liver enzymes (aspartate transaminase, alanine transaminase) and hepatic levels of TNF-α and oxidative stress parameters (reactive oxygen species, nitric oxide, and malondialdehyde). The intermittent restraint stress significantly attenuated the HFD-derived alterations in serum insulin levels, hepatic protein kinase B activity, and gene expression, especially related to lipogenesis. This intermittent restraint stress also elevated the serum epinephrine concentration and activated the adrenergic receptor ß2 or ß3 in livers or white adipose tissue (WAT). Activation of energy expenditure markers (uncoupling protein 1, peroxisome proliferator-activated receptor-γ coactivator-1α) in brown adipose tissue and the browning of WAT were also observed in the HFD with stress group. Taken together, our findings showed the beneficial effects of sympathetic activation by intermittent restraint stress on HFD-induced hepatic steatosis and partial inflammation.NEW & NOTEWORTHY In modern society, stress is a part of daily life, and a certain level of stress is inevitable to most of the general population. Uncontrolled severe stress is obviously harmful; however, certain kind/level of stress could be beneficial on lipid metabolism via sympathetic activation. Our data suggest that a sympathetic activation by intermittent restraint stress could play a positive role in maintaining the balance of hepatic lipid metabolism, especially under high-fat diet conditions.


Asunto(s)
Inflamación/metabolismo , Lipogénesis/fisiología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Fisiológico/fisiología , Sistema Nervioso Simpático/fisiología , Tejido Adiposo/metabolismo , Animales , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Endogámicos C57BL , Receptores Adrenérgicos beta 2/análisis , Triglicéridos/metabolismo
6.
Int J Mol Sci ; 19(10)2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30326626

RESUMEN

Oxidative stress is a common phenomenon and is linked to a wide range of diseases and pathological processes including aging. Tissue-specific variation in redox signaling and cellular responses to oxidative stress may be associated with vulnerability especially to age-related and chronic diseases. In order to provide a basis for tissue-specific difference, we examined the tissue-specific transcriptional features of 101 oxidative stress-associated genes in 10 different tissues and organs of healthy mice under physiological conditions. Microarray analysis results, which were consistent with quantitative polymerase chain reaction (qPCR) results, showed that catalase, Gpx3, and Gpx4 were most highly regulated in the liver, kidney, and testes. We also found the tissue-specific gene expression of SOD1 (liver and kidney), SOD2 (heart and muscle), and SOD3 (lung and kidney). The current results will serve as a reference for animal models and help advance our understanding of tissue-specific variability in oxidative stress-associated pathogenesis.


Asunto(s)
Regulación de la Expresión Génica , Estrés Oxidativo/genética , Transcriptoma , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Masculino , Ratones , Especificidad de Órganos/genética , Especies Reactivas de Oxígeno/metabolismo
7.
BMC Complement Altern Med ; 17(1): 397, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28797292

RESUMEN

BACKGROUND: Chronic stress contributes to the development of brain disorders, such as neurodegenerative and psychiatric diseases. Oxidative damage is well known as a causative factor for pathogenic process in brain tissues. The aim of this study is to evaluate the neuroprotective effect of a 30% ethanol extract of Aquilariae Lignum (ALE) in repeated stress-induced hippocampal oxidative injury. METHODS: Fifty BALB/c male mice (12 weeks old) were randomly divided into five groups (n = 10). For 11 consecutive days, each group was orally administered with distilled water, ALE (20 or 80 mg/kg) or N-acetylcysteine (NAC; 100 mg/kg), and then all mice (except unstressed group) were subjected to restraint stress for 6 h. On the final day, brain tissues and sera were isolated, and stress hormones and hippocampal oxidative alterations were examined. We also treated lipopolysaccharide (LPS, 1 µg/mL)-stimulated BV2 microglial cells with ALE (1 and 5 µg/mL) or NAC (10 µM) to investigate the pharmacological mechanism. RESULTS: Restraint stress considerably increased the serum levels of corticosterone and adrenaline and the hippocampal levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). ALE administration significantly attenuated the above abnormalities. ALE also significantly normalized the stress-induced activation of astrocytes and microglial cells in the hippocampus as well as the elevation of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). The in vitro assay outcome supplemented ALE could dramatically block NF-κB activation in microglia. The anti-oxidative stress effects of ALE were supported by the results of antioxidant components, 4-hydroxynonenal (4-HNE), NADPH oxidase 2 (NOX2), inducible nitric oxide synthase (iNOS) and NFE2L2 (Nrf2) in the hippocampal tissues. CONCLUSIONS: We firstly demonstrated the neuroprotective potentials of A. Lignum against hippocampal oxidative injury in repeated restraint stress. The corresponding mechanisms might involve modulations in the release of ROS, pro-inflammatory cytokines and stress hormones.


Asunto(s)
Antioxidantes/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Estrés Psicológico/metabolismo , Thymelaeaceae , Animales , Antioxidantes/metabolismo , Astrocitos/efectos de los fármacos , Corticosterona/sangre , Citocinas/metabolismo , Modelos Animales de Enfermedad , Epinefrina/sangre , Hipocampo/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos BALB C , Microglía/efectos de los fármacos , Microglía/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Restricción Física/psicología
8.
J Neurochem ; 136(1): 106-17, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26385432

RESUMEN

Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations in brain tissues, especially in the hippocampus. These findings are the first evidence that testosterone depletion makes the brain prone to oxidative injury.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo/fisiología , Estrés Psicológico/metabolismo , Testosterona/deficiencia , Animales , Encéfalo/patología , Peroxidación de Lípido/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Orquiectomía/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Restricción Física , Estrés Psicológico/patología
9.
Drug Chem Toxicol ; 39(1): 111-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26045230

RESUMEN

Three chemotoxins including dimethylnitrosamine (DMN), carbon tetrachloride (CCl4), and thioacetamide (TAA) are commonly used in hepatofibrotic models. We aimed to draw characteristics of histopathology and pro-fibrogenic cytokines including TGF-ß, PDGF and CTGF among three models. Rats were divided into six groups and intra-peritoneally injected with DMN (10 mg/kg, for three weeks, three consecutive days weekly), CCl4 (1.6 g/kg, for 10 weeks, twice weekly), TAA (200 mg/kg, for 12 weeks, twice weekly) or their corresponded treatment for each control group. The liver weights were decreased in DMN model, but not other models. Ascites were occurred as 3-, 2-, and 7-rats in DMN, CCl4, and TAA model, respectively. The lipid peroxidation was highest in CCl4 model, serum levels of liver enzymes were increased as similar severity. The hepatofibrotic alterations were remarkable in DMN and TAA model, but not CCl4 as evidenced by the Masson trichrome staining and hydroxyproline. The immunohistochemistry for α-SAM showed that the DMN model was most severely enhanced than other models. On the other hand, hepatic tissue levels of pro-fibrogenic cytokines including TGF-ß, PDGF, and CTGF were generally increased in three models, but totally different among models or measurement resources. Especially, serum levels of three cytokines were remarkably increased by CCl4 injection and CTGF levels in both hepatic tissue and serum were highest in CCl4 group. Our results firstly demonstrated comparative study for features of morphological finding and pro-fibrogenic cytokines in serum and hepatic protein levels among three models. Above results would be a helpful reference for hepatofibrotic studies.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Dimetilnitrosamina/toxicidad , Cirrosis Hepática Experimental/fisiopatología , Tioacetamida/toxicidad , Animales , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Peroxidación de Lípido/efectos de los fármacos , Cirrosis Hepática Experimental/inducido químicamente , Masculino , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/metabolismo
10.
J Tradit Chin Med ; 36(6): 724-9, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-29949334

RESUMEN

OBJECTIVE: To investigate beneficial effects of manual acupuncture on common cold periods and its symptoms depended on the difference onset time of common cold, within 36 h or over than that. To prove effects of manual acupuncture on common cold, a retrospective chart review was conducted. METHODS: Chart data for patients with common cold who were treated with only manual acupuncture with fulfilling Jackson scales and satisfaction at the end of each treatment were collected via multi-centers of Oriental hospitals, Oriental medicine clinics and covalent hospital in South Korea. Totally 187 patients were divided into two groups, Group Ⅰ (115 patients, within 36 h) and Group Ⅱ (72 patients, onset time of cold over than 36 h). Finally 120 patients were observed until entire resolution of cold symptoms. RESULTS: Group Ⅰ showed significant decreases themediandurationsofcompletelyrecovery (3 days; 95% CI 3.0-4.0) as compared with Group Ⅱ (6 days; 95% CI 4.0-7.0, P < 0.001). The manual acupuncture beneficially worked for reduction rate of common cold symptoms by 50% after initial treatment, decreased cold symptoms, and reduced cold duration. CONCLUSION: Manual acupuncture beneficially affected common cold and its symptoms. Moreover it is more susceptibility on the early time of onset cold.


Asunto(s)
Terapia por Acupuntura , Resfriado Común/terapia , Puntos de Acupuntura , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , República de Corea , Estudios Retrospectivos , Adulto Joven
11.
Phytother Res ; 29(2): 201-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25219493

RESUMEN

We investigated the modulating effect of Panax ginseng extract (PGE) on radiation-induced lung injury (RILI) by measuring early changes in oxidative stress levels, cytokine expression, and the histopathology of mouse lung tissue treated with high dose of X-ray radiation. The mice were pretreated with 25, 50, and 100-mg/kg doses of PGE orally for four consecutive days, and their thoraces were then exposed to 15-Gy X-ray radiation 1 h after the last administration of PGE on day 4. The pretreatments with 50 and 100 mg/kg PGE led to significant reductions in the elevation of lipid peroxidation levels at 2 and 10 days, respectively, after irradiation. The mice pretreated with PGE exhibited dose-dependent reductions in the irradiation-induced production of tumor necrosis factor α and transforming growth factor ß1 cytokines 10 days after irradiation, with these reductions nearly reaching the control levels after the 100-mg/kg dose. Furthermore, together with providing significant protection against reductions in catalase activity and glutathione content, pretreatment with 100 mg/kg PGE resulted in a marked attenuation of the severity of inflammatory changes in lung tissue 10 days after irradiation. A high pretreatment dose of PGE may be a useful pharmacological approach for protection against RILI.


Asunto(s)
Citocinas/metabolismo , Pulmón/patología , Estrés Oxidativo/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Animales , Catalasa/metabolismo , Femenino , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de la radiación , Raíces de Plantas/química , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Rayos X
12.
Molecules ; 21(1): E35, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26712731

RESUMEN

We evaluated the anti-atopic dermatitis (AD) effect of Atofreellage (AF), a herbal formula composed of 10 medicinal plants. AD was induced on the dorsal skin areas of NC/Nga mice (male, seven weeks old) by daily application of 2,4-dinitrochlorobenzene (DNCB) for five weeks. After three weeks of DNCB application, 200 µL of AF (0, 25, 50 or 100 mg/mL) was applied to the skin lesions. Histological findings, blood cell populations, serum levels of immunoglobulin E (IgE), histamine, pro-inflammatory cytokines, and inflammatory signaling in the skin tissue, and T-helper cell type 2 (Th2)-related cytokines in splenocytes were analyzed. Histopathological findings showed AF treatment notably attenuated the thickness of dorsal skin, and eosinophil infiltration. AF treatment (especially 100 mg/mL) also demonstrably ameliorated the blood cell population abnormalities, as the notable elevation of serum concentrations of IgE, histamine, TNF-α, IL-6 and IL-1ß were remarkably normalized by AF treatment. Western blot analysis evidenced the apparent normalization of inflammatory signals (ERK, p38 MAP kinase, JNK, and NF-κB) in the skin tissue. Additionally, AF treatment notably attenuated the activation of Th2-dominant cytokines (IL-13, IL-4, and IL-5) in Con A-treated splenocytes in an ex vivo assay. In conclusion, this study provides experimental evidence for the clinical relevance of Atofreellage.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inmunología , Extractos Vegetales/administración & dosificación , Bazo/efectos de los fármacos , Animales , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dinitroclorobenceno/efectos adversos , Modelos Animales de Enfermedad , Histamina/metabolismo , Inmunoglobulina E/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Bazo/inmunología , Células Th2/metabolismo
13.
J Pharmacopuncture ; 27(2): 131-141, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38948312

RESUMEN

Objectives: Polycystic ovary syndrome (PCOS) is one of the most common disorders and it shows up to 20% prevalence in reproductive-aged women populations, but no cures are available to date. We aimed to investigate the protective effects of Changbudodam-tang (CBD) on cell death signaling pathways, inflammation, and oxidative stress observed in Bone-Marrow derived human mesenchymal stem cell (BM-hMSC) by means of PCOS therapeutics in the future. Methods: BM-hMSCs were applied with cell deaths and injuries. Apoptosis and pyroptosis signals were quenched with their related signaling pathways using quantitative PCR, Western blot, and fluorescence image analysis. Results: Our data clearly displayed hydrogen peroxide- and nigericin-treated cell death signaling pathways via regulations of mitochondrial integrity and interleukin (IL)-1ß at the cellular levels (p < 0.01 or 0.001). We further observed that pre-treatment with CBD showed protective effects against oxidative stress by enhancement of antioxidant components at the cellular level, with respect to both protein and mRNA expression levels (p < 0.05, 0.01 or 0.001). The mechanisms of CBD were examined by Western blot analysis, and it showed anti-cell death, anti-inflammatory, and antioxidant effects via normalizations of the Jun N-terminal kinase/mitogen-activated protein kinase kinase 7/c-Jun signaling pathways. Conclusion: This study confirmed the pharmacological properties of CBD by regulation of cellular oxidation and the inflammation-provoked cell death condition of BM-hMSCs, which is mediated by the MKK7/JNK/c-Jun signaling pathway.

14.
Mol Metab ; 84: 101948, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677508

RESUMEN

OBJECTIVE: Uncoupling protein 1 (UCP1), a mitochondrial protein responsible for nonshivering thermogenesis in adipose tissue, serves as a distinct marker for thermogenic brown and beige adipocytes. Ucp1-Cre mice are thus widely used to genetically manipulate these thermogenic adipocytes. However, evidence suggests that UCP1 may also be expressed in non-adipocyte cell types. In this study, we investigated the presence of UCP1 expression in different mouse tissues that have not been previously reported. METHODS: We employed Ucp1-Cre mice crossed with Cre-inducible transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mice to investigate Ucp1-Cre expression in various tissues of adult female mice and developing embryos. Tamoxifen-inducible Ucp1-CreERT2 mice crossed with NuTRAP mice were used to assess active Ucp1 expression in adult mice. Immunostaining, RNA analysis, and single-cell/nucleus RNA-seq (sc/snRNA-seq) data analysis were performed to determine the expression of endogenous UCP1 and Ucp1-Cre-driven reporter expression. We also investigated the impact of UCP1 deficiency on mammary gland development and function using Ucp1-knockout (KO) mice. RESULTS: Ucp1-Cre expression was observed in the mammary glands within the inguinal white adipose tissue of female Ucp1-Cre; NuTRAP mice. Ucp1-Cre was activated during embryonic development in various tissues, including mammary glands, as well as in the brain, kidneys, eyes, and ears, specifically in epithelial cells in these organs. However, Ucp1-CreERT2 showed no or only partial activation in these tissues of adult mice, indicating the potential for low or transient expression of endogenous Ucp1. While sc/snRNA-seq data suggest potential expression of UCP1 in mammary epithelial cells in adult mice and humans, Ucp1-KO female mice displayed normal mammary gland development and function. CONCLUSIONS: Our findings reveal widespread Ucp1-Cre expression in various non-adipose tissue types, starting during early development. These results highlight the importance of exercising caution when interpreting data and devising experiments involving Ucp1-Cre mice.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Ratones Transgénicos , Proteína Desacopladora 1 , Animales , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Ratones , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Células Epiteliales/metabolismo , Integrasas/metabolismo , Integrasas/genética , Termogénesis/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Tejido Adiposo Pardo/metabolismo
15.
Nanoscale ; 16(2): 833-847, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38093712

RESUMEN

Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.


Asunto(s)
Lesiones Encefálicas , Nanopartículas , Accidente Cerebrovascular , Humanos , Animales , Astrocitos/metabolismo , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Lesiones Encefálicas/metabolismo , Péptidos/farmacología , Encéfalo/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/farmacología
16.
Phytother Res ; 27(12): 1854-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23460575

RESUMEN

Chunggan extract, CGX, is a modification of a traditional herbal medicine that has been used for patients suffering from various liver disorders since 2001. Here, we investigated the hepatoprotective effects of CGX and its underlying mechanisms in a rat model of chronic alcohol consumption. Rats were orally administered 30% ethanol solution for 4 weeks with or without CGX (50, 100, 200 mg/kg). The histopathology, biochemistry, oxidative stress/antioxidant biomarkers, hepatofibrogenic cytokines, and serum endotoxin level were analyzed. Alcohol treatment markedly elevated the serum levels of aspartate transaminase, alkaline phosphatase, and total reactive oxygen species, and tissue levels of hydroxyproline and malondialdehyde (MDA), while reducing the total glutathione (GSH) contents and the activities of superoxide dismutase and catalase. These alterations were significantly attenuated by CGX treatment (mainly 100 and 200 mg/kg). CGX treatment normalized the elevation of fibrogenic cytokines, including transforming growth factor-ß, platelet derived growth factor-ß, and connective tissue growth factor in hepatic tissues and ameliorated the increase in serum endotoxin concentration. These results suggest that CGX protects liver tissue from alcohol injury through antioxidant actions and prevention of endotoxin reflux. .


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Antioxidantes/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Citocinas/metabolismo , Masculino , Medicina Tradicional Coreana , Extractos Vegetales/uso terapéutico , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Sprague-Dawley
17.
Pharm Biol ; 51(8): 1052-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23746311

RESUMEN

CONTEXT: Nausea and vomiting are considered as the foremost unpleasant side effects of chemotherapy experienced by 20-90% of cancer patients. OBJECTIVE: In the present study, the effects of Korean Panax ginseng C.A. Meyer (Araliaceae) (RG), ginseng saponin (GS) and non-saponin (GNS) on cisplatin (CP)-induced pica and gastric damage in rats were investigated. MATERIAL AND METHODS: Rats were treated with RG (25, 50, 100 mg/kg b.wt.), GS (5 and 10 mg/kg 100 mg/kg b.wt.) and GNS (50 and 100 mg/kg b.wt.) before or after a single intraperitoneal injection of CP (6 mg/kg b.wt.). Kaolin together with normal food intake, normal food alone, body weight, histological examination of stomach and small intestine were used as indices of CP-induced pica in rats. RESULTS: Pre-treatment with RG (50 and 100 mg/kg b.wt.) attenuated CP-induced kaolin intake at 24 h. CP-induced kaolin intake decreased upon post-treatment of rats with RG (50 and 100 mg/kg b.wt.) at 48 h. The incidence of body weight reduction at 48 and 72 h diminished in rats post-treated with RG (50 mg/kg b.wt.). Pre-treatment with GS (5 and 10 mg/kg b.wt.) and GNS (50 and 100 mg/kg b.wt.) attenuated CP-induced kaolin intake while normal food intake was not improved in 24 and 48 h. DISCUSSION AND CONCLUSION: The gastro-protective effects of RG, GS and GNS were further confirmed by histopathological (damage in glandular portion and villi with dilated appearance) findings. The study indicates that both the red GS and GNS improve feeding behavior against CP-induced pica in rats.


Asunto(s)
Cisplatino/toxicidad , Panax/química , Pica/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antineoplásicos/toxicidad , Peso Corporal , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Inyecciones Intraperitoneales , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Caolín/administración & dosificación , Masculino , Pica/inducido químicamente , Extractos Vegetales/administración & dosificación , Ratas , Ratas Sprague-Dawley , Saponinas/administración & dosificación , Saponinas/aislamiento & purificación , Saponinas/farmacología , Estómago/efectos de los fármacos , Estómago/patología , Factores de Tiempo
18.
bioRxiv ; 2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37905088

RESUMEN

Objective: Uncoupling protein 1 (UCP1), a mitochondrial protein responsible for nonshivering thermogenesis in adipose tissue, serves as a distinct marker for thermogenic brown and beige adipocytes. Ucp1-Cre mice are thus widely used to genetically manipulate these thermogenic adipocytes. However, evidence suggests that UCP1 may also be expressed in non-adipocyte cell types. In this study, we investigated the presence of UCP1 expression in different mouse tissues that have not been previously reported. Methods: We employed Ucp1-Cre mice crossed with Cre-inducible transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mice, to investigate Ucp1-Cre expression in various tissues of adult female mice and developing embryos. Tamoxifen-inducible Ucp1-CreERT2 mice crossed with NuTRAP mice were used to assess active UCP1 expression. Immunostaining, RNA analysis, and single-cell/nucleus RNA-seq (sc/snRNA-seq) data analysis were performed to determine the expression of endogenous UCP1 and Ucp1-Cre-driven reporter expression. We also investigated the impact of UCP1 deficiency on mammary gland development and function using Ucp1-knockout (KO) mice. Results: Ucp1-Cre expression was observed in the mammary glands within the inguinal white adipose tissue of female Ucp1-Cre; NuTRAP mice. However, endogenous Ucp1 was not actively expressed as Ucp1-CreERT2 failed to induce the reporter expression in the mammary glands. Ucp1-Cre was activated during embryonic development in various tissues, including mammary glands, as well as in the brain, kidneys, eyes, and ears, specifically in epithelial cells in these organs. While sc/snRNA-seq data suggest potential expression of UCP1 in mammary epithelial cells in adult mice and humans, Ucp1-KO female mice displayed normal mammary gland development and function. Conclusions: Our findings reveal widespread Ucp1-Cre expression in various non-adipose tissue types, starting during early development. These results highlight the importance of exercising caution when interpreting data and devising experiments involving Ucp1-Cre mice.

19.
Biomolecules ; 13(10)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37892137

RESUMEN

Dysregulation of metabolic functions in the liver impacts the development of diabetes and metabolic disorders. Normal liver function can be compromised by increased inflammation via the activation of signaling such as nuclear factor (NF)-κB signaling. Notably, we have previously identified lysine demethylase 2A (KDM2A)-as a critical negative regulator of NF-κB. However, there are no studies demonstrating the effect of KDM2A on liver function. Here, we established a novel liver-specific Kdm2a knockout mouse model to evaluate KDM2A's role in liver functions. An inducible hepatic deletion of Kdm2a, Alb-Cre-Kdm2afl/fl (Kdm2a KO), was generated by crossing the Kdm2a floxed mice (Kdm2afl/fl) we established with commercial albumin-Cre transgenic mice (B6.Cg-Tg(Alb-cre)21Mgn/J). We show that under a normal diet, Kdm2a KO mice exhibited increased serum alanine aminotransferase (ALT) activity, L-type triglycerides (TG) levels, and liver glycogen levels vs. WT (Kdm2afl/fl) animals. These changes were further enhanced in Kdm2a liver KO mice in high-fat diet (HFD) conditions. We also observed a significant increase in NF-κB target gene expression in Kdm2a liver KO mice under HFD conditions. Similarly, the KO mice exhibited increased immune cell infiltration. Collectively, these data suggest liver-specific KDM2A deficiency may enhance inflammation in the liver, potentially through NF-κB activation, and lead to liver dysfunction. Our study also suggests that the established Kdm2afl/fl mouse model may serve as a powerful tool for studying liver-related metabolic diseases.


Asunto(s)
Hepatopatías , FN-kappa B , Ratones , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Hígado/metabolismo , Inflamación/genética , Inflamación/metabolismo , Transducción de Señal , Hepatopatías/metabolismo
20.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36355547

RESUMEN

Jaeumgeonbi-Tang (JGT), a traditional herbal medicine, has been used to treat dizziness and vertigo in Korea and China for hundreds of years. The purpose of this study was to evaluate the pharmacological properties of JGT in chronic subjective dizziness (CSD) patients. A randomized, double-blind, parallel-group and placebo-controlled trial was performed with a total of 50 CSD patients. The patients were randomly assigned to one of two groups: JGT or placebo (n = 25 for each). All participants received the treatment (placebo or JGT, 24 g/day) for 4 weeks. We analyzed the serum levels of oxidative stressors, antioxidants, and stress hormones. Serum levels of lipid peroxidation, but not nitric oxide, were significantly decreased in the JGT group. JGT not only prevented the decline of serum total glutathione contents and total antioxidant capacity, but it also increased superoxide dismutase and catalase activities. Serum levels of stress hormones including cortisol, adrenaline, and serotonin were notably normalized by JGT treatment, but noradrenaline levels were not affected. Regarding the safety and tolerability of JGT, we found no allergic, adverse, or side effects in any of the participants. JGT showed beneficial effects on CSD patients by improving redox status and balancing psycho-emotional stress hormones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA