Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 231(Pt 1): 115984, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156354

RESUMEN

In the quest of improving the photocatalytic efficiency of photocatalysts, the combination of two and more semiconductors recently has garnered significant attention among scientists in the field. The doping of conductive metals is also an effective pathway to improve photocatalytic performance by avoiding electron/hole pair recombination and enhancing photon energy absorption. This work presented a design and fabrication of porphyrin@g-C3N4/Ag nanocomposite using acid-base neutralization-induced self-assembly approach from monomeric porphyrin and g-C3N4/Ag material. g-C3N4/Ag material was synthesized by a green reductant of Cleistocalyx operculatus leaf extract. Electron scanning microscopy (SEM), X-ray diffraction (XRD), FT-IR spectroscopy, and UV-vis spectrometer were utilized to analyse the properties of the prepared materials. The prepared porphyrin@g-C3N4/Ag nanocomposite showed well integration of porphyrin nanostructures on the g-C3N4/Ag's surface, in which porphyrin nanofiber was of the diameter in nanoscales and the length of several micrometers, and Ag NPs had an average particle size of less than 20 nm. The photocatalytic behavior of the resultant nanocomposite was tested for the degradation of Rhodamine B dye, which exhibited a remarkable RhB photodegrading percentage. The possible mechanism for photocatalysis of the porphyrin@g-C3N4/Ag nanocomposite toward Rhodamine B dye was also proposed and discussed.


Asunto(s)
Nanocompuestos , Porfirinas , Espectroscopía Infrarroja por Transformada de Fourier , Colorantes , Electrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA