Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2000, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448437

RESUMEN

Bioresorbable neural implants based on emerging classes of biodegradable materials offer a promising solution to the challenges of secondary surgeries for removal of implanted devices required for existing neural implants. In this study, we introduce a fully bioresorbable flexible hybrid opto-electronic system for simultaneous electrophysiological recording and optogenetic stimulation. The flexible and soft device, composed of biodegradable materials, has a direct optical and electrical interface with the curved cerebral cortex surface while exhibiting excellent biocompatibility. Optimized to minimize light transmission losses and photoelectric artifact interference, the device was chronically implanted in the brain of transgenic mice and performed to photo-stimulate the somatosensory area while recording local field potentials. Thus, the presented hybrid neural implant system, comprising biodegradable materials, promises to provide monitoring and therapy modalities for versatile applications in biomedicine.


Asunto(s)
Implantes Absorbibles , Depresores del Sistema Nervioso Central , Animales , Ratones , Optogenética , Artefactos , Encéfalo , Electrónica , Ratones Transgénicos
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167347, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39019092

RESUMEN

Intranasal infection is commonly used to establish a SARS-CoV-2 mouse model due to its non-invasive procedures and a minimal effect from the operation itself. However, mice intranasally infected with SARS-CoV-2 have a high mortality rate, which limits the utility of this model for exploring therapeutic strategies and the sequelae of non-fatal COVID-19 cases. To resolve these limitations, an aerosolised viral administration method has been suggested. However, an in-depth pathological analysis comparing the two models is lacking. Here, we show that inhalation and intranasal SARS-CoV-2 (106 PFU) infection models established in K18-hACE2 mice develop unique pathological features in both the respiratory and central nervous systems, which could be directly attributed to the infection method. While the inhalation-infection model exhibited relatively milder pathological parameters, it closely mimicked the prevalent chest CT pattern observed in COVID-19 patients with focal, peripheral lesions and fibrotic scarring in the recuperating lung. We also found the evidence of direct neuron-invasion from the olfactory receptor neurons to the olfactory bulb in the intranasal model and showed the trigeminal nerve as an alternative route of transmission to the brain in inhalation infected mice. Even after viral clearance confirmed at 14 days post-infection, mild lesions were still found in the brain of inhalation-infected mice. These findings suggest that the inhalation-infection model has advantages over the intranasal-infection model in closely mimicking the pathological features of non-fatal symptoms of COVID-19, demonstrating its potential to study the sequelae and possible interventions for long COVID.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Pulmón , SARS-CoV-2 , Animales , COVID-19/patología , COVID-19/virología , Ratones , Pulmón/patología , Pulmón/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Bulbo Olfatorio/patología , Bulbo Olfatorio/virología , Humanos , Administración Intranasal , Femenino , Neuronas Receptoras Olfatorias/virología , Neuronas Receptoras Olfatorias/metabolismo
3.
Immune Netw ; 24(2): e7, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38725670

RESUMEN

Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

4.
EBioMedicine ; 99: 104932, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38118400

RESUMEN

BACKGROUND: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS: In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS: Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFß signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION: Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFß signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).


Asunto(s)
COVID-19 , Melfalán , gammaglobulinas , Animales , Cricetinae , Ratones , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Hurones , Bronquios , Factor de Crecimiento Transformador beta , Ratones Transgénicos , Modelos Animales de Enfermedad , Pulmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA