Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Periodontal Res ; 59(4): 698-711, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38699841

RESUMEN

OBJECTIVE AND BACKGROUND: This research aimed to examine the role of C-X-C motif chemokine ligand 5 (CXCL5) and C-X-C motif chemokine ligand 8 (CXCL8; also known as IL-8) in neutrophilic inflammation triggered by peri-implantitis and to shed light on the underlying mechanisms that link them to the development of this condition. MATERIALS: This study included 40 patients who visited the Department of Periodontology at Kyungpook University Dental Hospital. They were divided into two groups based on their condition: healthy implant (HI) group (n = 20) and peri-implantitis (PI) group (n = 20). Biopsy samples of PI tissue were collected from the patients under local anesthesia. HI tissue was obtained using the same method during the second implant surgery. To construct libraries for control and test RNAs, the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria) was used according to the manufacturer's instructions. Samples were pooled based on representative cytokines obtained from RNA sequencing results and subjected to Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Hematoxylin and eosin staining, and immunohistochemistry (IHC) analysis were performed to visually assess expression levels and analyze tissue histology. Student's t-test was employed to conduct statistical analyses. RESULTS: Initially, heatmaps were used to examine gene expression variations between the HI and PI groups based on the results of RNA sequencing. Notably, among various cytokines, CXCL5 and CXCL8 had the highest expression levels in the PI group compared with the HI group, and they are known to be associated with inflammatory responses. In the gingival tissues, the expression of genes encoding cytokines such as interleukin (IL)-1ß, tumor necrosis factor-alpha (TNF)-α, interleukin (IL)-6, and CXCL5/CXCL8 was assessed via RT-qPCR. The mRNA expression level of CXCL5/CXCL8 significantly increased in the PI group compared with the HI group (p < .045). Contrarily, the mRNA expression level of interleukin 36 receptor antagonist (IL36RN) significantly decreased (p < .008). IHC enabled examination of the distribution and intensity of CXCL5/CXCL8 protein expression within the tissue samples. Specifically, increased levels of CXCL5/CXCL8 promote inflammatory responses, cellular proliferation, migration, and invasion within the peri-implant tissues. These effects are mediated through the activation of the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: This study found that the PI sites had higher gene expression level of CXCL8/CXCL5 in the soft tissue than HI sites, which could help achieve more accurate diagnosis and treatment planning.


Asunto(s)
Quimiocina CXCL5 , Interleucina-8 , Neutrófilos , Periimplantitis , Humanos , Periimplantitis/patología , Periimplantitis/inmunología , Periimplantitis/metabolismo , Interleucina-8/análisis , Masculino , Neutrófilos/patología , Femenino , Persona de Mediana Edad , Inflamación , Adulto
2.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38256100

RESUMEN

In this study, a novel film of poly(vinyl alcohol) (PVA)/pullulan (PULL) with improved surface characteristics was prepared from poly(vinyl acetate) (PVAc)/PULL blend films with various mass ratios after the saponification treatment in a heterogeneous medium. According to proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared, and X-ray diffraction results, it was established that the successful fabrication of saponified PVA/PULL (100/0, 90/10, and 80/20) films could be obtained from PVAc/PULL (100/0, 90/10, and 80/20) films, respectively, after 72 h saponification at 50 °C. The degree of saponification calculated from 1H-NMR analysis results showed that fully saponified PVA was obtained from all studied films. Improved hydrophilic characteristics of the saponified films were revealed by a water contact angle test. Moreover, the saponified films showed improved mechanical behavior, and the micrographs of saponified films showed higher surface roughness than the unsaponified films. This kind of saponified film can be widely used for biomedical applications. Moreover, the reported saponified film dressing extended the lifespan of dressing as determined by its self-healing capacity and considerably advanced in vivo wound-healing development, which was attributed to its multifunctional characteristics, meaning that saponified film dressings are promising candidates for full-thickness skin wound healing.


Asunto(s)
Etanol , Alcohol Polivinílico , Glucanos , Vendajes , Poli A , Cloruro de Polivinilo
3.
Differentiation ; 125: 18-26, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35349880

RESUMEN

Mouse embryonic stem cells (mESCs) are characterized by self-renewal and pluripotency and can undergo differentiation into the three germ layers (ectoderm, mesoderm, and endoderm). Melanoma-associated antigen D1 (Maged1), which is expressed in all developing and adult tissues, modulates tissue regeneration and development. In the present study, we examined the expression and function of Maged1 in mESCs. Maged1 protein and mRNA expression increased during mESC differentiation. The pluripotency of mESCs was significantly reduced through extracellular signal-regulated kinase 1/2 phosphorylation upon knockdown of Maged1, and through G1 cell cycle arrest during cell division, resulting in significantly reduced mESC proliferation. Moreover, the diameter of the embryoid bodies was significantly reduced, accompanied by increased levels of ectodermal differentiation markers and decreased levels of mesodermal and endodermal differentiation markers. Maged1-knockdown mESC lines showed significantly reduced teratoma volumes and inhibition of teratoma formation in nude mice. Additionally, we observed increased ectodermal markers but decreased mesodermal and endodermal markers in teratoma tissues. These findings show that Maged1 affects mESC pluripotency, proliferation, cell cycle, and differentiation, thereby contributing to our understanding of the basic molecular biological mechanisms and potential roles of Maged1 as a regulator of various mESC properties.


Asunto(s)
Células Madre Embrionarias de Ratones , Animales , Antígenos de Diferenciación/metabolismo , Ciclo Celular/genética , Muerte Celular , Diferenciación Celular/genética , División Celular , Ratones , Ratones Desnudos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Teratoma/genética , Teratoma/metabolismo , Teratoma/patología
4.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239855

RESUMEN

Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.


Asunto(s)
Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Proliferación Celular , Neoplasias de la Boca/tratamiento farmacológico , Línea Celular Tumoral
5.
J Biol Chem ; 296: 100595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33781747

RESUMEN

Serum amyloid A (SAA) is an acute-phase protein produced primarily in the liver that plays a key role in both the initiation and maintenance of inflammation. Rapidly secreted SAA induces neutrophilia at inflammatory sites, initiating inflammation and inducing the secretion of various cytokines, including TNF-α, IL-6, and IL-17. IL-17 is expressed in several inflammatory cells, including innate immune cells such as γδT cells, ILC3 cells, and neutrophils. Increased IL-17 levels exacerbate various inflammatory diseases. Among other roles, IL-17 induces bone loss by increasing receptor activator of nuclear factor-κB ligand (RANKL) secretion, which stimulates osteoclast differentiation. Several studies have demonstrated that chronic inflammation induces bone loss, suggesting a role for SAA in bone health. To test this possibility, we observed an increase in IL-17-producing innate immune cells, neutrophils, and γδT cells in these mice. In 6-month-old animals, we detected increased osteoclast-related gene expression and IL-17 expression in bone lysates. We also observed an increase in neutrophils that secreted RANKL in the bone marrow of TG mice. Finally, we demonstrated decreased bone mineral density in these transgenic (TG) mice. Our results revealed that the TG mice have increased populations of IL-17-producing innate immune cells, γδT cells, and neutrophils in TG mice. We additionally detected increased RANKL and IL-17 expression in the bone marrow of 6-month-old TG mice. Furthermore, we confirmed significant increases in RANKL-expressing neutrophils in TG mice and decreased bone mineral density. Our results provide evidence that chronic inflammation induced by SAA1 causes bone loss via IL-17-secreting innate immune cells.


Asunto(s)
Densidad Ósea , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Interleucina-17/biosíntesis , Hígado/metabolismo , Proteína Amiloide A Sérica/genética , Animales , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Osteoclastos/metabolismo
6.
J Cell Biochem ; 123(3): 547-567, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34958137

RESUMEN

Mouse embryonic stem cells (mESCs) are a widely used model for their diverse availability in studying early embryonic development and their application in regenerative treatment of various intractable diseases. Transient receptor potential melastatin 7 (Trpm7) regulates Ca2+ as a nonselective ion channel and is essential for early embryonic development; however, the precise role of Trpm7 in mESCs has not been clearly elucidated. In this study, we showed that the inhibition of Trpm7 affects the pluripotency and self-renewal of mESCs. We found that short hairpin RNA (shRNA)-mediated suppression of Trpm7 resulted in decreased expression of transcriptional regulators, Oct4 and Sox2, which maintain stemness in mESCs. In addition, Trpm7 knockdown led to alterations in the basic properties of mESCs, such as decreased proliferation, cell cycle arrest at the G0/G1 phase, and increased apoptosis. Furthermore, embryoid body (EB) formation and teratoma formation assays revealed abnormal regulation of differentiation due to Trpm7 knockdown, including the smaller size of EBs, elevated ectodermal differentiation, and diminished endodermal and mesodermal differentiation. We found that EB Day 7 samples displayed decreased intracellular Ca2+ levels compared to those of the scrambled group. Finally, we identified that these alterations induced by Trpm7 knockdown occurred due to decreased phosphorylation of mechanistic target of rapamycin (mTOR) and subsequent activation of extracellular signal-regulated kinase (ERK) in mESCs. Our findings suggest that Trpm7 could be a novel regulator for maintaining stemness and modulating the differentiation of mESCs.


Asunto(s)
Células Madre Embrionarias de Ratones , Canales Catiónicos TRPM , Animales , Diferenciación Celular , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , ARN Interferente Pequeño/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
7.
Cell Biochem Funct ; 39(1): 67-76, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32529664

RESUMEN

Mouse embryonic stem cells (mESCs) are pluripotent cells that possess the ability to self-renew and differentiate into three germ layers. Owing to these characteristics, mESCs act as important models for stem cell research and are being used in many clinical applications. Among the many cathepsins, cathepsin A (Ctsa), a serine protease, affects the function and properties of stem cells. However, studies on the role of Ctsa in stem cells are limited. Here, we observed a significant increase in Ctsa expression during mESC differentiation at protein levels. Furthermore, we established Ctsa knockdown mESCs. Ctsa knockdown led to Erk1/2 phosphorylation, which in turn inhibited the pluripotency of mESCs and induced G2/M cell cycle arrest to inhibit mESC proliferation. The knockdown also induced abnormal differentiation in mESCs and aberrant expression of differentiation markers. Furthermore, we identified inhibition of teratoma formation in nude mice. Our results suggested that Ctsa affects mESC pluripotency, proliferation, cell cycle and differentiation, and highlighted the potential of Ctsa to act as a core factor that can regulate various mESC properties. SIGNIFICANCE OF THE STUDY: Our results indicate that cathepsin A (Ctsa) affects the properties of mESCs. Inhibition of Ctsa resulted in a decrease in the pluripotency of mouse embryonic stem cells (mESCs). Further, Ctsa suppression resulted in decreased proliferation via cell cycle arrest. Moreover, Ctsa inhibition reduced differentiation abilities and formation of teratoma in mESCs. Our results demonstrated that Ctsa is an important factor controlling mESC abilities.


Asunto(s)
Catepsina A/metabolismo , Diferenciación Celular , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Células Madre Embrionarias de Ratones/enzimología , Animales , Catepsina A/genética , Línea Celular , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Técnicas de Silenciamiento del Gen , Puntos de Control de la Fase M del Ciclo Celular/genética , Ratones , Células Madre Embrionarias de Ratones/citología
8.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299129

RESUMEN

Oral cancer (OC) has been attracted research attention in recent years as result of its high morbidity and mortality. Costunolide (CTD) possesses potential anticancer and bioactive abilities that have been confirmed in several types of cancers. However, its effects on oral cancer remain unclear. This study investigated the potential anticancer ability and underlying mechanisms of CTD in OC in vivo and in vitro. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of CTD on OC cells; assessments for migration and invasion of OC cells were conducted by transwell; Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. The results revealed that CTD suppressed the proliferation, migration and invasion of oral cancer cells effectively and induced cell cycle arrest and apoptosis; regarding the mechanism, CTD bound to AKT directly by binding assay and repressed AKT activities through kinase assay, which thereby downregulating the downstream of AKT. Furthermore, CTD remarkably promotes the generation of reactive oxygen species by flow cytometry assay, leading to cell apoptosis. Notably, CTD strongly suppresses cell-derived xenograft OC tumor growth in an in vivo mouse model. In conclusion, our results suggested that costunolide might prevent progression of OC and promise to be a novel AKT inhibitor.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/farmacología , Animales , Ciclo Celular , Movimiento Celular , Proliferación Celular , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Ratones Desnudos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Cell Biochem ; 121(11): 4667-4679, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32065444

RESUMEN

Mouse embryonic stem cells (mESCs) exhibit self-renewal and pluripotency, can differentiate into all three germ layers, and serve as an essential model in stem cell research and for potential clinical application in regenerative medicine. Melanoma-associated antigen A2 (MAGEA2) is not expressed in normal somatic cells but rather in different types of cancer, especially in undifferentiated cells, such as in the testis, differentiating cells, and ESCs. However, the role of MAGEA2 in mESCs remains to be clarified. Accordingly, in this study, we examined the expression and functions of MAGEA2 in mESCs. MAGEA2 messenger RNA (mRNA) expression was decreased during mESCs differentiation. MAGEA2 function was then evaluated in knockdown mESC. MAGEA2 knockdown resulted in decreased pluripotency marker gene expression in mESCs consequent to increased Erk1/2 phosphorylation. Decreased MAGEA2 expression inhibited mESC proliferation via S phase cell cycle arrest with a subsequent decrease in cell cycle-associated genes Cdk1, Cdk2, Cyclin A1, Cyclin D1, and Cdc25a. Apoptotic mESCs markedly increased along with cleaved forms of caspases 3, 6, and 7 and PARP expression, confirming caspase-dependent apoptosis. MAGEA2 knockdown significantly decreased embryoid body size in vitro when cells were differentiated naturally and teratoma size in vivo, concomitant with decreased ectoderm marker gene expression. These findings suggested that MAGEA2 regulates ESC pluripotency, proliferation, cell cycle, apoptosis, and differentiation. The enhanced understanding of the regulatory mechanisms underlying diverse mESC characteristics will facilitate the clinical application of mESCs.


Asunto(s)
Apoptosis , Diferenciación Celular , Proliferación Celular , Antígenos Específicos del Melanoma/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Teratoma/patología , Animales , Ciclo Celular , Células Cultivadas , Humanos , Masculino , Antígenos Específicos del Melanoma/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Teratoma/metabolismo
10.
Arch Biochem Biophys ; 688: 108407, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32407712

RESUMEN

Prostate cancer has the highest incidence among men in advanced countries, as well as a high mortality rate. Despite the efforts of numerous researchers to identify a gene-based therapeutic target as an effective treatment of prostate cancer, there is still a need for further research. The cathepsin gene family is known to have a close correlation with various cancer types and is highly expressed across these cancer types. This study aimed at investigating the correlation between the cathepsin A (CTSA) gene and prostate cancer. Our findings indicated a significantly elevated level of CTSA gene expression in the tissues of patients with prostate cancer when compared with normal prostate tissues. Furthermore, the knockdown of the CTSA gene in the representative prostate cancer cell lines PC3 and DU145 led to reduced proliferation and a marked reduction in anchorage-independent colony formation, which was shown to be caused by cell cycle arrest in the S phase. In addition, CTSA gene-knockdown prostate cancer cell lines showed a substantial decrease in migration and invasion, as well as a decrease in the marker genes that promote epithelial mesenchymal transition (EMT). Such phenotypic changes in prostate cancer cell lines through CTSA gene suppression were found to be mainly caused by reduced p38 MAPK protein phosphorylation; i.e. the inactivation of the p38 MAPK cell signaling pathway. Tumorigenesis was also found to be inhibited in CTSA gene-knockdown prostate cancer cell lines when a xenograft assay was carried out using Balb/c nude mice, and the p38 MAPK phosphorylation was inhibited in tumor tissues. Thus, the CTSA gene is presumed to play a key role in human prostate cancer tissues through high-level expression, and the suppression of the CTSA gene leads to the inhibition of prostate cancer cell proliferation, colony formation, and metastasis. The mechanism, by which these effects occur, was demonstrated to be the inactivation of the p38 MAPK signaling pathway.


Asunto(s)
Catepsina A/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Neoplasias de la Próstata/metabolismo , Transducción de Señal/fisiología , Animales , Secuencia de Bases , Catepsina A/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones Endogámicos BALB C , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/fisiopatología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Scand J Immunol ; 89(6): e12764, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30892738

RESUMEN

Serum amyloid A (SAA) is an acute phase protein with pro-inflammatory cytokine-like properties. Recent studies have revealed that SAA promoted interleukin-17 (IL-17) production by various cells, including γδ T cells. γδ T cells are innate immune cells and express Toll-like receptor 2 (TLR2) on their surface, which is one of the SAA receptors. In this study, we investigated the relationship between γδ T cells and SAA1 through TLR2, by using hepatic SAA1-overexpressing transgenic (TG) mice. By injecting CU-CPT22, which is a TLR2 inhibitor, into the mice, we confirmed that SAA1 induced IL-17 in γδ T cells through TLR2. In vitro studies have confirmed that SAA1 increased IL-17 secretion in γδ T cells in combination with IL-23. We also observed a thickened epidermis layer and granulocyte penetration into the skin similar to the pathology of psoriasis in TG mice. In addition, strongly expressed SAA1 and penetration of γδ T cells in the skin of TG mice were detected. The exacerbation of psoriasis is associated with an increase in IL-17 levels. Therefore, these symptoms were induced by IL-17-producing γδ T cells increased by SAA1. Our study confirmed that SAA1 was a prominent protein that increased IL-17 levels through TLR2 in γδ T cells, confirming the possibility that SAA1 may exacerbate inflammatory diseases through γδ T cells.


Asunto(s)
Interleucina-17/biosíntesis , Psoriasis/patología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Proteína Amiloide A Sérica/inmunología , Receptor Toll-Like 2/inmunología , Animales , Células Cultivadas , Subunidad p19 de la Interleucina-23/biosíntesis , Subunidad p19 de la Interleucina-23/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Psoriasis/inmunología , ARN Mensajero/biosíntesis , Receptor Toll-Like 2/antagonistas & inhibidores
12.
FASEB J ; 32(1): 390-403, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899881

RESUMEN

Ten-eleven translocation methylcytosine dioxygenase 1 (Tet1) initiates DNA demethylation by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) at CpG-rich regions of genes, which have key roles in adult neurogenesis and memory. In addition, the overexpression of Tet1 with 5-hmC alteration in patients with psychosis has also been reported, for instance in schizophrenia and bipolar disorders. The mechanism underlying Tet1 overexpression in the brain; however, is still elusive. In the present study, we found that Tet1-transgenic (Tet1-TG) mice displayed abnormal behaviors involving elevated anxiety and enhanced fear memories. We confirmed that Tet1 overexpression affected adult neurogenesis with oligodendrocyte differentiation in the hippocampal dentate gyrus of Tet1-TG mice. In addition, Tet1 overexpression induced the elevated expression of immediate early genes, such as Egr1, c-fos, Arc, and Bdnf, followed by the activation of intracellular calcium signals (i.e., CamKII, ERK, and CREB) in prefrontal and hippocampal neurons. The expression of GABA receptor subunits (Gabra2 and Gabra4) fluctuated in the prefrontal cortex and hippocampus. We evaluated the effects of Tet1 overexpression on intracellular calcium-dependent cascades by activating the Egr1 promoter in vitro Tet1 enhanced Egr1 expression, which may have led to alterations in Gabra2 and Gabra4 expression in neurons. Taken together, we suggest that the Tet1 overexpression in our Tet1-TG mice can be applied as an effective model for studying various stress-related diseases that show hyperactivation of intracellular calcium-dependent cascades in the brain.-Kwon, W., Kim, H.-S., Jeong, J., Sung, Y., Choi, M., Park, S., Lee, J., Jang, S., Kim, S. H., Lee, S., Kim, M. O., Ryoo, Z. Y. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice.


Asunto(s)
Ansiedad/genética , Ansiedad/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Miedo/fisiología , Memoria/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Animales , Señalización del Calcio , Proteínas de Unión al ADN/antagonistas & inhibidores , Epigénesis Genética , Femenino , Técnicas de Silenciamiento del Gen , Genes Inmediatos-Precoces , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/genética , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Corteza Prefrontal/metabolismo , Embarazo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Receptores de GABA-A/genética , Regulación hacia Arriba
13.
Transgenic Res ; 28(5-6): 499-508, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31407125

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by cognitive impairment, progressive neurodegeneration, and amyloid-ß (Aß) lesion. In the neuronal death and disease progression, inflammation is known to play an important role. Our previous study on acute-phase protein serum amyloid A1 (SAA1) overexpressed mice showed that the liver-derived SAA1 accumulated in the brain by crossing the brain blood barrier (BBB) and trigger the depressive-like behavior on mouse. Since SAA1 involved in immune responses in other diseases, we focused on the possibility that SAA1 may exacerbate the neuronal inflammation related to Alzheimer's disease. A APP/SAA overexpressed double transgenic mouse was generated using amyloid precursor protein overexpressed (APP)-c105 mice and SAA1 overexpressed mice to examine the function of SAA1 in Aß abundant condition. Comparisons between APP and APP/SAA1 transgenic mice showed that SAA1 exacerbated amyloid aggregation and glial activation; which lead to the memory decline. Behavior tests also supported this result. Overall, overexpression of SAA1 intensified the neuronal inflammation in amyloid abundant condition and causes the greater memory decline compared to APP mice, which only expresses Aß 1-42.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Placa Amiloide/genética , Proteína Amiloide A Sérica/genética , Enfermedad de Alzheimer/sangre , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/sangre , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Inflamación/sangre , Inflamación/genética , Inflamación/patología , Ratones , Ratones Transgénicos/genética , Neuroglía/metabolismo , Neuroglía/patología , Placa Amiloide/sangre , Agregación Patológica de Proteínas/sangre , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología
14.
Mol Cell Probes ; 47: 101440, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31445970

RESUMEN

Pre-mRNA processing factor 4 (PRPF4), a core protein in U4/U6 snRNP, maintains snRNP structures by interacting with PRPF3 and cyclophilin H. Expression of the PRPF4 gene affects cell survival as well as apoptosis and is responsible for retinitis pigmentosa (RP). Proteomics analysis shows that PRPF4 may be a therapeutic target in human cancers. Nevertheless, the exact function and role of the PRPF4 gene are unclear. In this study, we assessed the expression of PRPF4 gene in human breast cancer cells. First, we confirmed that the PRPF4 gene was overexpressed in various breast cancer cell lines. Next, using breast cancer cell lines MCF7 and MDA-MB-468, we established stable cell lines with PRPF4 gene knockdown. We also performed microarray analysis to investigate molecular mechanisms underlying PRPF4 activity. All cell lines with PRPF4 gene knockdown exhibited reduced cell proliferation, remarkable reduction in anchorage-independent colony formation capacity, and reduction of PCNA protein, which is a marker cell of proliferation. Reduced expression of the PRPF4 gene induced apoptosis and changes in the expression of associated apoptotic markers in breast cancer cell lines. Knockdown of the PRPF4 gene reduced cellular capacity for migration and invasion (the key hallmarks of human cancers) and decreased the expression of genes involved in epithelial-mesenchymal transition (EMT). Microarray results showed that the expression of PPIP5K1, PPIPK2, and YWHAE genes was reduced at the transcriptional level, leading to reduced phosphorylation of p38 MAPK. These findings suggest that knockdown of PRPF4 gene slows down breast cancer progression via suppression of p38 MAPK phosphorylation. In conclusion, the PRPF4 gene plays an important role in the growth of breast cancer cells and is therefore a potential therapeutic target.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Apoptosis , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas , Células MCF-7 , Fosforilación
15.
Cell Biochem Funct ; 37(3): 139-147, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30883865

RESUMEN

Lin28, which is highly expressed during embryogenesis, has been shown to play an important role in cell growth and embryonic development. Meanwhile, Lin28 represses let-7 miRNA biogenesis and block pre-let-7 processing in the cytoplasm. The let-7 family of miRNAs is known to repress oncogenesis and cell cycle progression by targeting oncogenic genes and signalling pathways. Consequently, Lin28 acts as an oncogene by upregulating let-7 targets through the repression of let-7 biogenesis. A recent genome-wide association study (GWAS) showed that many genes related to Type 2 diabetes (T2D) are also oncogenes or cell cycle regulators. The role of Lin28 in mouse growth and glucose metabolism in metabolic-related tissues has also been studied. In these studies, whole-body Lin28 overexpression was found to promote glucose utilization and prevent weight gain by inhibiting let-7 biogenesis. Furthermore, Lin28 has been found to directly stimulate skeletal myogenesis and cell growth. Therefore, we determined whether similar effects mediated by Lin28a, which is essential for cell growth and proliferation, may also apply to pancreatic ß-cells. We found that overexpression of Lin28a protects pancreatic ß-cells from streptozotocin (STZ)-induced ß-cell destruction in vitro and in vivo. Furthermore, Lin28a-overexpressing transgenic (Tg) mice had higher insulin secretion in the presence of glucose than in control mice. Our findings suggest that the Lin28/let-7 axis is an important regulator of pancreatic ß-cell functions and that precise modulation of this axis may be helpful in treating metabolic diseases such as diabetes. SIGNIFICANCE OF THE STUDY: We demonstrate that Lin28a prevents pancreatic ß-cell death against streptozotocin (STZ)-induced ß-cell destruction in vitro and in vivo. Furthermore, Lin28a promotes cell survival and proliferation by activating the PI3K-Akt signalling pathway, which may be dependent on let-7 regulation. Taken together, our results imply that the Lin28a/let-7 axis is an important regulator of pancreatic ß-cell functions and that precise modulation of this axis may be helpful in treating metabolic diseases such as diabetes.


Asunto(s)
Diabetes Mellitus Experimental/prevención & control , Células Secretoras de Insulina/efectos de los fármacos , Proteínas de Unión al ARN/genética , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Células Secretoras de Insulina/patología , Masculino , Ratones , Proteínas de Unión al ARN/metabolismo , Estreptozocina , Células Tumorales Cultivadas
16.
Cell Biochem Funct ; 37(8): 608-617, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31502671

RESUMEN

Mouse embryonic stem cells (mESCs) are characterized by their self-renewal and pluripotency and are capable of differentiating into all three germ layers. For this reason, mESCs are considered a very important model for stem cell research and clinical applications in regenerative medicine. The pre-mRNA processing factor 4 (PRPF4) gene is known to have a major effect on pre-mRNA splicing and is also known to affect tissue differentiation during development. In this study, we investigated the effects of PRPF4 knockdown on mESCs. First, we allowed mESCs to differentiate naturally and observed a significant decrease in PRPF4 expression during the differentiation process. We then artificially induced the knockdown of PRPF4 in mESCs and observed the changes in the phenotype. When PRPF4 was knocked down, various genes involved in mESC pluripotency showed significantly decreased expression. In addition, mESC proliferation increased abnormally, accompanied by a significant increase in mESC colony size. The formation of mESC embryoid bodies and teratomas was delayed following PRPF4 knockdown. Based on these results, the reduced expression of PRPF4 affects mESC phenotypes and is a key factor in mESC. SIGNIFICANCE OF THE STUDY: Our results indicate that PRPF4 affects the properties of mESCs. Suppression of PRPF4 resulted in a decrease in pluripotency of mESC and promoted proliferation. In addition, suppression of PRPF4 also resulted in decreased apoptosis. Moreover, the inhibition of PRPF4 reduced the ability to differentiate and formation of teratoma in mESC. Our results demonstrated that PRPF4 is a key factor of controlling mESC abilities.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Animales , Células Cultivadas , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/antagonistas & inhibidores , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Teratoma/genética , Teratoma/patología
17.
J Bone Miner Metab ; 36(5): 537-546, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29027021

RESUMEN

Bone homeostasis is achieved through coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. When the balance is skewed in favor of osteoclasts due to hormonal or inflammatory issues, pathologic bone loss occurs leading to conditions such as osteoporosis, rheumatoid arthritis, and periodontitis. Bortezomib is the first in-class of proteasome inhibitors used as an anti-myeloma agent. In the present study, we show that bortezomib directly inhibited the receptor activator of nuclear factor κB ligand (RANKL)-dependent osteoclast differentiation of mouse bone marrow macrophages. Bortezomib significantly reduced the induction of osteoclast marker genes and proteins including nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). The intraperitoneal injection of bortezomib reduced ovariectomy-induced osteoclastogenesis and protected the mice from bone loss. These data propose novel use of bortezomib as a potential anti-resorptive agent.


Asunto(s)
Bortezomib/uso terapéutico , Diferenciación Celular , Osteoclastos/patología , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Ovariectomía , Animales , Biomarcadores/metabolismo , Resorción Ósea/complicaciones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/patología , Resorción Ósea/prevención & control , Bortezomib/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Femenino , Humanos , Ratones Endogámicos ICR , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoporosis/complicaciones , Osteoporosis/patología
18.
Endocr J ; 65(4): 437-447, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29434073

RESUMEN

Placental growth factor (PlGF), a member of the vascular endothelial growth factor (VEGF) sub-family, plays a major role in angiogenesis and vasculogenesis. Previous study demonstrated that PlGF-overexpressing transgenic (Tg) mice had gestational loss. In addition, PlGF secretion was up-regulated in isolated T lymphocytes (T-cell) upon CD3/CD28 stimulation, suggesting that PlGF could be a regulator of T-cell differentiation and development. T-cells are well known to play a critical role in obesity-induced inflammation. Therefore, to verify the possible link of diet-induced obesity (DIO) with inflammation and related metabolic disorders, such as insulin resistance, we fed high-fat diet (HFD) to Tg mice for 16 weeks. Adiposity and glucose intolerance significantly increase in Tg mice fed a HFD (Tg HFD) compared to wild-type (WT) mice fed HFD (WT HFD). In addition, macrophage infiltrations were significantly higher in the epididymal white adipose tissue (EWAT), liver, and pancreatic islets of Tg HFD mice compared to WT HFD mice. In the in vitro study, we showed that isolated CD4+ T-cells from Tg mice further differentiate into type 1 (Th1) and type 17 (Th17) helper T-cells via CD3/CD28 stimulation. Furthermore, we observed that the pro-inflammatory cytokines IL-6, IL-17, and TNFα, are remarkably increased in Tg mice compared to WT mice. These findings demonstrate that PlGF overexpression in T-cells might lead to inflammatory T-cell differentiation and accumulation in adipose tissue (AT) or metabolism-related tissues, contributing to the development of systemic metabolic disorders. Thus, PlGF may provide an effective therapeutic target in the management of obesity-induced inflammation and related metabolic disorders.


Asunto(s)
Citocinas/biosíntesis , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Obesidad/metabolismo , Factor de Crecimiento Placentario/metabolismo , Adiposidad/fisiología , Animales , Inflamación/genética , Resistencia a la Insulina/fisiología , Ratones , Ratones Transgénicos , Obesidad/etiología , Factor de Crecimiento Placentario/genética
19.
PLoS Genet ; 11(8): e1005480, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26305787

RESUMEN

The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Interneuronas/fisiología , Proteínas con Homeodominio LIM/fisiología , Neuronas Motoras/fisiología , Células Receptoras Sensoriales/fisiología , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Neuronas Colinérgicas/metabolismo , Secuencia de Consenso , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas del Tejido Nervioso/fisiología , Estrés Fisiológico , Transcriptoma
20.
Carcinogenesis ; 38(11): 1136-1146, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29029040

RESUMEN

Herbacetin is a flavonol compound that is found in plants such as flaxseed and ramose scouring rush herb, it possesses a strong antioxidant capacity, and exerts anticancer effects on colon and breast cancer. However, the effect of herbacetin on skin cancer has not been investigated. Herein, we identified herbacetin as a dual V-akt murine thymoma viral oncogene homolog (AKT) and ornithine decarboxylase (ODC) inhibitor, and illustrated its anticancer effects in vitro and in vivo against cutaneous squamous cell carcinoma (SCC) and melanoma cell growth. To identify the direct target(s) of herbacetin, we screened several skin cancer-related protein kinases, and results indicated that herbacetin strongly suppresses both AKT and ODC activity. Results of cell-based assays showed that herbacetin binds to both AKT and ODC, inhibits TPA-induced neoplastic transformation of JB6 mouse epidermal cells, and suppresses anchorage-independent growth of cutaneous SCC and melanoma cells. The inhibitory activity of herbacetin was associated with markedly reduced NF-κB and AP1 reporter activity. Interestingly, herbacetin effectively attenuated TPA-induced skin cancer development and also exhibited therapeutic effects against solar-UV-induced skin cancer and melanoma growth in vivo. Our findings indicate that herbacetin is a potent AKT and ODC inhibitor that should be useful for preventing skin cancers.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Flavonoides/farmacología , Melanoma/tratamiento farmacológico , Ornitina Descarboxilasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Carcinoma de Células Escamosas/metabolismo , Línea Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Humanos , Melanoma/metabolismo , Ratones , FN-kappa B , Inhibidores de la Ornitina Descarboxilasa/farmacología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA