Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(23): 9729-9736, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38801277

RESUMEN

Detecting nucleic acids at ultralow concentrations is critical for research and clinical applications. Particle-based assays are commonly used to detect nucleic acids. However, DNA hybridization on particle surfaces is inefficient due to the instability of tethered sequences, which negatively influences the assay's detection sensitivity. Here, we report a method to stabilize sequences on particle surfaces using a double-stranded linker at the 5' end of the tethered sequence. We termed this method Rigid Double Stranded Genomic Linkers for Improved DNA Analysis (RIGID-DNA). Our method led to a 3- and 100-fold improvement of the assays' clinical and analytical sensitivity, respectively. Our approach can enhance the hybridization efficiency of particle-based assays without altering existing assay workflows. This approach can be adapted to other platforms and surfaces to enhance the detection sensitivity.


Asunto(s)
ADN , Límite de Detección , Hibridación de Ácido Nucleico , ADN/química , Humanos , Conformación de Ácido Nucleico
2.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651657

RESUMEN

MOTIVATION: Protein and peptide engineering has become an essential field in biomedicine with therapeutics, diagnostics and synthetic biology applications. Helices are both abundant structural feature in proteins and comprise a major portion of bioactive peptides. Precise design of helices for binding or biological activity is still a challenging problem. RESULTS: Here, we present HelixGAN, the first generative adversarial network method to generate de novo left-handed and right-handed alpha-helix structures from scratch at an atomic level. We developed a gradient-based search approach in latent space to optimize the generation of novel α-helical structures by matching the exact conformations of selected hotspot residues. The designed α-helical structures can bind specific targets or activate cellular receptors. There is a significant agreement between the helix structures generated with HelixGAN and PEP-FOLD, a well-known de novo approach for predicting peptide structures from amino acid sequences. HelixGAN outperformed RosettaDesign, and our previously developed structural similarity method to generate D-peptides matching a set of given hotspots in a known L-peptide. As proof of concept, we designed a novel D-GLP1_1 analog that matches the conformations of critical hotspots for the GLP1 function. MD simulations revealed a stable binding mode of the D-GLP1_1 analog coupled to the GLP1 receptor. This novel D-peptide analog is more stable than our previous D-GLP1 design along the MD simulations. We envision HelixGAN as a critical tool for designing novel bioactive peptides with specific properties in the early stages of drug discovery. AVAILABILITY AND IMPLEMENTATION: https://github.com/xxiexuezhi/helix_gan. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Profundo , Conformación Proteica en Hélice alfa , Péptidos/química , Estructura Secundaria de Proteína , Proteínas
3.
PLoS Comput Biol ; 19(4): e1011033, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37043517

RESUMEN

Protein design is a technique to engineer proteins by permuting amino acids in the sequence to obtain novel functionalities. However, exploring all possible combinations of amino acids is generally impossible due to the exponential growth of possibilities with the number of designable sites. The present work introduces circuits implementing a pure quantum approach, Grover's algorithm, to solve protein design problems. Our algorithms can adjust to implement any custom pair-wise energy tables and protein structure models. Moreover, the algorithm's oracle is designed to consist of only adder functions. Quantum computer simulators validate the practicality of our circuits, containing up to 234 qubits. However, a smaller circuit is implemented on real quantum devices. Our results show that using [Formula: see text] iterations, the circuits find the correct results among all N possibilities, providing the expected quadratic speed up of Grover's algorithm over classical methods (i.e., [Formula: see text]).


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Aminoácidos , Algoritmos , Ingeniería
4.
J Chem Inf Model ; 62(15): 3618-3626, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35875887

RESUMEN

The COVID-19 pandemic continues to spread around the world, with several new variants emerging, particularly those of concern (VOCs). Omicron (B.1.1.529), a recent VOC with many mutations in the spike protein's receptor-binding domain (RBD), has attracted a great deal of scientific and public interest. We previously developed two D-peptide inhibitors for the infection of the original SARS-CoV-2 and its VOCs, alpha and beta, in vitro. Here, we demonstrated that Covid3 and Covid_extended_1 maintained their high-affinity binding (29.4-31.3 nM) to the omicron RBD. Both D-peptides blocked the omicron variant in vitro infection with IC50s of 3.13 and 5.56 µM, respectively. We predicted that Covid3 shares a larger overlapping binding region with the ACE2 binding motif than different classes of neutralizing monoclonal antibodies. We envisioned the design of D-peptide inhibitors targeting the receptor-binding motif as the most promising approach for inhibiting current and future VOCs of SARS-CoV-2, given that the ACE2 binding interface is more limited to tolerate mutations than most of the RBD's surface.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Pandemias , Péptidos/farmacología , Glicoproteína de la Espiga del Coronavirus
5.
Mol Cell ; 53(1): 140-7, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24374310

RESUMEN

Eukaryotic protein kinases are generally classified as being either tyrosine or serine-threonine specific. Though not evident from inspection of their primary sequences, many serine-threonine kinases display a significant preference for serine or threonine as the phosphoacceptor residue. Here we show that a residue located in the kinase activation segment, which we term the "DFG+1" residue, acts as a major determinant for serine-threonine phosphorylation site specificity. Mutation of this residue was sufficient to switch the phosphorylation site preference for multiple kinases, including the serine-specific kinase PAK4 and the threonine-specific kinase MST4. Kinetic analysis of peptide substrate phosphorylation and crystal structures of PAK4-peptide complexes suggested that phosphoacceptor residue preference is not mediated by stronger binding of the favored substrate. Rather, favored kinase-phosphoacceptor combinations likely promote a conformation optimal for catalysis. Understanding the rules governing kinase phosphoacceptor preference allows kinases to be classified as serine or threonine specific based on their sequence.


Asunto(s)
Péptidos/química , Proteínas Serina-Treonina Quinasas/química , Quinasas p21 Activadas/química , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Cinética , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especificidad por Sustrato/fisiología , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
6.
Nucleic Acids Res ; 48(11): 6382-6402, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32383734

RESUMEN

The Cys2His2 zinc finger is the most common DNA-binding domain expanding in metazoans since the fungi human split. A proposed catalyst for this expansion is an arms race to silence transposable elements yet it remains poorly understood how this domain is able to evolve the required specificities. Likewise, models of its DNA binding specificity remain error prone due to a lack of understanding of how adjacent fingers influence each other's binding specificity. Here, we use a synthetic approach to exhaustively investigate binding geometry, one of the dominant influences on adjacent finger function. By screening over 28 billion protein-DNA interactions in various geometric contexts we find the plasticity of the most common natural geometry enables more functional amino acid combinations across all targets. Further, residues that define this geometry are enriched in genomes where zinc fingers are prevalent and specificity transitions would be limited in alternative geometries. Finally, these results demonstrate an exhaustive synthetic screen can produce an accurate model of domain function while providing mechanistic insight that may have assisted in the domains expansion.


Asunto(s)
Modelos Moleculares , Dominios Proteicos/fisiología , Dedos de Zinc/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN/síntesis química , ADN/genética , ADN/metabolismo , Aprendizaje Profundo , Humanos , Enlace de Hidrógeno , Dominios Proteicos/genética , Reproducibilidad de los Resultados , Especificidad por Sustrato/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
7.
Mol Syst Biol ; 16(12): e9310, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33438817

RESUMEN

Many proteins involved in signal transduction contain peptide recognition modules (PRMs) that recognize short linear motifs (SLiMs) within their interaction partners. Here, we used large-scale peptide-phage display methods to derive optimal ligands for 163 unique PRMs representing 79 distinct structural families. We combined the new data with previous data that we collected for the large SH3, PDZ, and WW domain families to assemble a database containing 7,984 unique peptide ligands for 500 PRMs representing 82 structural families. For 74 PRMs, we acquired enough new data to map the specificity profiles in detail and derived position weight matrices and binding specificity logos based on multiple peptide ligands. These analyses showed that optimal peptide ligands resembled peptides observed in existing structures of PRM-ligand complexes, indicating that a large majority of the phage-derived peptides are likely to target natural peptide-binding sites and could thus act as inhibitors of natural protein-protein interactions. The complete dataset has been assembled in an online database (http://www.prm-db.org) that will enable many structural, functional, and biological studies of PRMs and SLiMs.


Asunto(s)
Bases de Datos de Proteínas , Péptidos/metabolismo , Encuestas y Cuestionarios , Secuencia de Aminoácidos , Bacteriófagos/metabolismo , Humanos , Ligandos , Péptidos/química
8.
Proc Natl Acad Sci U S A ; 115(7): 1505-1510, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378946

RESUMEN

Biologics are a rapidly growing class of therapeutics with many advantages over traditional small molecule drugs. A major obstacle to their development is that proteins and peptides are easily destroyed by proteases and, thus, typically have prohibitively short half-lives in human gut, plasma, and cells. One of the most effective ways to prevent degradation is to engineer analogs from dextrorotary (D)-amino acids, with up to 105-fold improvements in potency reported. We here propose a general peptide-engineering platform that overcomes limitations of previous methods. By creating a mirror image of every structure in the Protein Data Bank (PDB), we generate a database of ∼2.8 million D-peptides. To obtain a D-analog of a given peptide, we search the (D)-PDB for similar configurations of its critical-"hotspot"-residues. As a proof of concept, we apply our method to two peptides that are Food and Drug Administration approved as therapeutics for diabetes and osteoporosis, respectively. We obtain D-analogs that activate the GLP1 and PTH1 receptors with the same efficacy as their natural counterparts and show greatly increased half-life.


Asunto(s)
Aminoácidos/química , Bases de Datos de Proteínas , Péptidos/química , Ingeniería de Proteínas/métodos , Algoritmos , Péptido 1 Similar al Glucagón/agonistas , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células HEK293 , Semivida , Humanos , Hormona Paratiroidea/agonistas , Hormona Paratiroidea/química , Hormona Paratiroidea/metabolismo , Péptidos/metabolismo , Péptidos/farmacocinética , Conformación Proteica , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Reproducibilidad de los Resultados
9.
Annu Rev Pharmacol Toxicol ; 57: 39-60, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27618737

RESUMEN

Protein-protein interactions are fundamental for virtually all functions of the cell. A large fraction of these interactions involve short peptide motifs, and there has been increased interest in targeting them using peptide-based therapeutics. Peptides benefit from being specific, relatively safe, and easy to produce. They are also easy to modify using chemical synthesis and molecular biology techniques. However, significant challenges remain regarding the use of peptides as therapeutic agents. Identification of peptide motifs is difficult, and peptides typically display low cell permeability and sensitivity to enzymatic degradation. In this review, we outline the principal high-throughput methodologies for motif discovery and describe current methods for overcoming pharmacokinetic and bioavailability limitations.


Asunto(s)
Descubrimiento de Drogas/métodos , Biblioteca de Péptidos , Péptidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Animales , Descubrimiento de Drogas/tendencias , Humanos , Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología
10.
J Org Chem ; 85(3): 1644-1651, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31893470

RESUMEN

Hydrocarbon-stapled peptides are a class of bioactive α-helical ligands developed to target protein-protein interactions. Peptide stapling has benefited from the development of several chemical reactions to modulate their membrane permeability and binding affinity. However, in most current programs, choosing the best stapling positions is usually a trial-and-error process. Here, we develop a protocol to obtain optimal stapling positions computationally. Our method is based on molecular dynamics simulations and free energy calculations with nonequilibrium approaches; here, we predict the binding poses, hot-spot residues, and binding affinity differences of a set of perfluoroarene stapled α-helical peptides of the BIM BH3 peptide to the BCLXL receptor. The prediction of the hot-spot residues within the target peptide through computational alanine scanning anticipates not only the key residues for the receptor-peptide complex formation but also which positions should be avoided when applying the stapling groups. The staple moieties introduce local conformational changes not only in the replaced positions but also on their neighbor residues of the template peptide further affecting their binding behavior. Our approach is successful at rank-ordering the binding affinities of these stapled peptides with respect to the BIM BH3 peptide.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Conformación Proteica en Hélice alfa
11.
Mol Cell ; 46(6): 884-92, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22749401

RESUMEN

Alternative splicing plays a key role in the expansion of proteomic and regulatory complexity, yet the functions of the vast majority of differentially spliced exons are not known. In this study, we observe that brain and other tissue-regulated exons are significantly enriched in flexible regions of proteins that likely form conserved interaction surfaces. These proteins participate in significantly more interactions in protein-protein interaction (PPI) networks than other proteins. Using LUMIER, an automated PPI assay, we observe that approximately one-third of analyzed neural-regulated exons affect PPIs. Inclusion of these exons stimulated and repressed different partner interactions at comparable frequencies. This assay further revealed functions of individual exons, including a role for a neural-specific exon in promoting an interaction between Bridging Integrator 1 (Bin1)/Amphiphysin II and Dynamin 2 (Dnm2) that facilitates endocytosis. Collectively, our results provide evidence that regulated alternative exons frequently remodel interactions to establish tissue-dependent PPI networks.


Asunto(s)
Empalme Alternativo , Mapas de Interacción de Proteínas , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Células Cultivadas , Dinamina II/genética , Dinamina II/metabolismo , Exones , Células HEK293 , Humanos , Luciferasas de Renilla/genética , Luciferasas de Renilla/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Proteómica , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
Hum Mutat ; 40(9): 1414-1423, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243847

RESUMEN

Predicting the impact of mutations on proteins remains an important problem. As part of the CAGI5 frataxin challenge, we evaluate the accuracy with which Provean, FoldX, and ELASPIC can predict changes in the Gibbs free energy of a protein using a limited data set of eight mutations. We find that different methods have distinct strengths and limitations, with no method being strictly superior to other methods on all metrics. ELASPIC achieves the highest accuracy while also providing a web interface which simplifies the evaluation and analysis of mutations. FoldX is slightly less accurate than ELASPIC but is easier to run locally, as it does not depend on external tools or datasets. Provean achieves reasonable results while being computational less expensive than the other methods and not requiring a structure of the protein. In addition to methods submitted to the CAGI5 community experiment, and with the aim to inform about other methods with high accuracy, we also evaluate predictions made by Rosetta's ddg_monomer protocol, Rosetta's cartesian_ddg protocol, and thermodynamic integration calculations using Amber package. ELASPIC still achieves the highest accuracy, while Rosetta's catesian_ddg protocol appears to perform best in capturing the overall trend in the data.


Asunto(s)
Biología Computacional/métodos , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Mutación , Humanos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Termodinámica , Frataxina
13.
Hum Mutat ; 40(9): 1392-1399, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31209948

RESUMEN

Frataxin (FXN) is a highly conserved protein found in prokaryotes and eukaryotes that is required for efficient regulation of cellular iron homeostasis. Experimental evidence associates amino acid substitutions of the FXN to Friedreich Ataxia, a neurodegenerative disorder. Recently, new thermodynamic experiments have been performed to study the impact of somatic variations identified in cancer tissues on protein stability. The Critical Assessment of Genome Interpretation (CAGI) data provider at the University of Rome measured the unfolding free energy of a set of variants (FXN challenge data set) with far-UV circular dichroism and intrinsic fluorescence spectra. These values have been used to calculate the change in unfolding free energy between the variant and wild-type proteins at zero concentration of denaturant (ΔΔGH2O) . The FXN challenge data set, composed of eight amino acid substitutions, was used to evaluate the performance of the current computational methods for predicting the ΔΔGH2O value associated with the variants and to classify them as destabilizing and not destabilizing. For the fifth edition of CAGI, six independent research groups from Asia, Australia, Europe, and North America submitted 12 sets of predictions from different approaches. In this paper, we report the results of our assessment and discuss the limitations of the tested algorithms.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Algoritmos , Dicroismo Circular , Humanos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Frataxina
14.
Proteins ; 87(3): 236-244, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30520126

RESUMEN

Peptide-based therapeutics are an alternative to small molecule drugs as they offer superior specificity, lower toxicity, and easy synthesis. Here we present an approach that leverages the dramatic performance increase afforded by the recent arrival of GPU accelerated thermodynamic integration (TI). GPU TI facilitates very fast, highly accurate binding affinity optimization of peptides against therapeutic targets. We benchmarked TI predictions using published peptide binding optimization studies. Prediction of mutations involving charged side-chains was found to be less accurate than for non-charged, and use of a more complex 3-step TI protocol was found to boost accuracy in these cases. Using the 3-step protocol for non-charged side-chains either had no effect or was detrimental. We use the benchmarked pipeline to optimize a peptide binding to our recently discovered cancer target: EME1. TI calculations predict beneficial mutations using both canonical and non-canonical amino acids. We validate these predictions using fluorescence polarization and confirm that binding affinity is increased. We further demonstrate that this increase translates to a significant reduction in pancreatic cancer cell viability.


Asunto(s)
Endodesoxirribonucleasas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Péptidos/química , Termodinámica , Aminoácidos/química , Supervivencia Celular/efectos de los fármacos , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/genética , Humanos , Simulación de Dinámica Molecular , Mutación/genética , Neoplasias Pancreáticas/genética , Péptidos/genética , Péptidos/farmacología , Unión Proteica
15.
Genes Dev ; 25(7): 767-78, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21460040

RESUMEN

Protein kinases are key regulators of cellular processes. In spite of considerable effort, a full understanding of the pathways they participate in remains elusive. We globally investigated the proteins that interact with the majority of yeast protein kinases using protein microarrays. Eighty-five kinases were purified and used to probe yeast proteome microarrays. One-thousand-twenty-three interactions were identified, and the vast majority were novel. Coimmunoprecipitation experiments indicate that many of these interactions occurred in vivo. Many novel links of kinases to previously distinct cellular pathways were discovered. For example, the well-studied Kss1 filamentous pathway was found to bind components of diverse cellular pathways, such as those of the stress response pathway and the Ccr4-Not transcriptional/translational regulatory complex; genetic tests revealed that these different components operate in the filamentation pathway in vivo. Overall, our results indicate that kinases operate in a highly interconnected network that coordinates many activities of the proteome. Our results further demonstrate that protein microarrays uncover a diverse set of interactions not observed previously.


Asunto(s)
Fenómenos Fisiológicos Celulares/fisiología , Análisis por Matrices de Proteínas , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Inmunoprecipitación , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Unión Proteica , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
RNA ; 22(4): 636-55, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26847261

RESUMEN

Post-transcriptional regulation of mRNAs plays an essential role in the control of gene expression. mRNAs are regulated in ribonucleoprotein (RNP) complexes by RNA-binding proteins (RBPs) along with associated protein and noncoding RNA (ncRNA) cofactors. A global understanding of post-transcriptional control in any cell type requires identification of the components of all of its RNP complexes. We have previously shown that these complexes can be purified by immunoprecipitation using anti-RBP synthetic antibodies produced by phage display. To develop the large number of synthetic antibodies required for a global analysis of RNP complex composition, we have established a pipeline that combines (i) a computationally aided strategy for design of antigens located outside of annotated domains, (ii) high-throughput antigen expression and purification in Escherichia coli, and (iii) high-throughput antibody selection and screening. Using this pipeline, we have produced 279 antibodies against 61 different protein components of Drosophila melanogaster RNPs. Together with those produced in our low-throughput efforts, we have a panel of 311 antibodies for 67 RNP complex proteins. Tests of a subset of our antibodies demonstrated that 89% immunoprecipitate their endogenous target from embryo lysate. This panel of antibodies will serve as a resource for global studies of RNP complexes in Drosophila. Furthermore, our high-throughput pipeline permits efficient production of synthetic antibodies against any large set of proteins.


Asunto(s)
Anticuerpos/química , Proteínas de Drosophila/inmunología , Ribonucleoproteínas/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Antígenos/inmunología , Antígenos/aislamiento & purificación , Western Blotting , Regiones Determinantes de Complementariedad , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Inmunoprecipitación , Datos de Secuencia Molecular , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Ribonucleoproteínas/aislamiento & purificación
17.
Nat Chem Biol ; 12(4): 275-81, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26900867

RESUMEN

Protein-protein interactions (PPIs) are emerging as a promising new class of drug targets. Here, we present a novel high-throughput approach to screen inhibitors of PPIs in cells. We designed a library of 50,000 human peptide-binding motifs and used a pooled lentiviral system to express them intracellularly and screen for their effects on cell proliferation. We thereby identified inhibitors that drastically reduced the viability of a pancreatic cancer line (RWP1) while leaving a control line virtually unaffected. We identified their target interactions computationally, and validated a subset in experiments. We also discovered their potential mechanisms of action, including apoptosis and cell cycle arrest. Finally, we confirmed that synthetic lipopeptide versions of our inhibitors have similarly specific and dosage-dependent effects on cancer cell growth. Our screen reveals new drug targets and peptide drug leads, and it provides a rich data set covering phenotypes for the inhibition of thousands of interactions.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas/métodos , Biblioteca de Péptidos , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Lentivirus/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Mapas de Interacción de Proteínas/genética
18.
PLoS Comput Biol ; 13(8): e1005722, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28837553

RESUMEN

Protein design remains an important problem in computational structural biology. Current computational protein design methods largely use physics-based methods, which make use of information from a single protein structure. This is despite the fact that multiple structures of many protein folds are now readily available in the PDB. While ensemble protein design methods can use multiple protein structures, they treat each structure independently. Here, we introduce a flexible backbone strategy, FlexiBaL-GP, which learns global protein backbone movements directly from multiple protein structures. FlexiBaL-GP uses the machine learning method of Gaussian Process Latent Variable Models to learn a lower dimensional representation of the protein coordinates that best represent backbone movements. These learned backbone movements are used to explore alternative protein backbones, while engineering a protein within a parallel tempered MCMC framework. Using the human ubiquitin-USP21 complex as a model we demonstrate that our design strategy outperforms current strategies for the interface design task of identifying tight binding ubiquitin variants for USP21.


Asunto(s)
Biología Computacional/métodos , Ingeniería de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Unión Proteica , Ubiquitina
19.
Bioinformatics ; 32(10): 1589-91, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26801957

RESUMEN

UNLABELLED: ELASPIC is a novel ensemble machine-learning approach that predicts the effects of mutations on protein folding and protein-protein interactions. Here, we present the ELASPIC webserver, which makes the ELASPIC pipeline available through a fast and intuitive interface. The webserver can be used to evaluate the effect of mutations on any protein in the Uniprot database, and allows all predicted results, including modeled wild-type and mutated structures, to be managed and viewed online and downloaded if needed. It is backed by a database which contains improved structural domain definitions, and a list of curated domain-domain interactions for all known proteins, as well as homology models of domains and domain-domain interactions for the human proteome. Homology models for proteins of other organisms are calculated on the fly, and mutations are evaluated within minutes once the homology model is available. AVAILABILITY AND IMPLEMENTATION: The ELASPIC webserver is available online at http://elaspic.kimlab.org CONTACT: pm.kim@utoronto.ca or pi@kimlab.orgSupplementary data: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteoma , Humanos , Mutación , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Programas Informáticos
20.
Bioinformatics ; 32(2): 203-10, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26411870

RESUMEN

MOTIVATION: Rapid advances in genotyping and genome-wide association studies have enabled the discovery of many new genotype-phenotype associations at the resolution of individual markers. However, these associations explain only a small proportion of theoretically estimated heritability of most diseases. In this work, we propose an integrative mixture model called JBASE: joint Bayesian analysis of subphenotypes and epistasis. JBASE explores two major reasons of missing heritability: interactions between genetic variants, a phenomenon known as epistasis and phenotypic heterogeneity, addressed via subphenotyping. RESULTS: Our extensive simulations in a wide range of scenarios repeatedly demonstrate that JBASE can identify true underlying subphenotypes, including their associated variants and their interactions, with high precision. In the presence of phenotypic heterogeneity, JBASE has higher Power and lower Type 1 Error than five state-of-the-art approaches. We applied our method to a sample of individuals from Mexico with Type 2 diabetes and discovered two novel epistatic modules, including two loci each, that define two subphenotypes characterized by differences in body mass index and waist-to-hip ratio. We successfully replicated these subphenotypes and epistatic modules in an independent dataset from Mexico genotyped with a different platform. AVAILABILITY AND IMPLEMENTATION: JBASE is implemented in C++, supported on Linux and is available at http://www.cs.toronto.edu/∼goldenberg/JBASE/jbase.tar.gz. The genotype data underlying this study are available upon approval by the ethics review board of the Medical Centre Siglo XXI. Please contact Dr Miguel Cruz at mcruzl@yahoo.com for assistance with the application. CONTACT: anna.goldenberg@utoronto.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Epistasis Genética , Fenotipo , Teorema de Bayes , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Genotipo , Técnicas de Genotipaje , Humanos , México , Relación Cintura-Cadera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA