RESUMEN
BACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms. METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts. RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings. CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.
Asunto(s)
Resistencia a Antineoplásicos , Factor 5A Eucariótico de Iniciación de Traducción , Melanoma , Mutación , Factores de Iniciación de Péptidos , Poliaminas , Proteínas Proto-Oncogénicas B-raf , Proteínas de Unión al ARN , Vemurafenib , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Animales , Poliaminas/metabolismo , Ratones , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Vemurafenib/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Sistemas CRISPR-Cas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Lisina/análogos & derivadosRESUMEN
BACKGROUND: Astrocytes, one of the most resilient cells in the brain, transform into reactive astrocytes in response to toxic proteins such as amyloid beta (Aß) in Alzheimer's disease (AD). However, reactive astrocyte-mediated non-cell autonomous neuropathological mechanism is not fully understood yet. We aimed our study to find out whether Aß-induced proteotoxic stress affects the expression of autophagy genes and the modulation of autophagic flux in astrocytes, and if yes, how Aß-induced autophagy-associated genes are involved Aß clearance in astrocytes of animal model of AD. METHODS: Whole RNA sequencing (RNA-seq) was performed to detect gene expression patterns in Aß-treated human astrocytes in a time-dependent manner. To verify the role of astrocytic autophagy in an AD mouse model, we developed AAVs expressing shRNAs for MAP1LC3B/LC3B (LC3B) and Sequestosome1 (SQSTM1) based on AAV-R-CREon vector, which is a Cre recombinase-dependent gene-silencing system. Also, the effect of astrocyte-specific overexpression of LC3B on the neuropathology in AD (APP/PS1) mice was determined. Neuropathological alterations of AD mice with astrocytic autophagy dysfunction were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through novel object recognition test (NOR) and novel object place recognition test (NOPR). RESULTS: Here, we show that astrocytes, unlike neurons, undergo plastic changes in autophagic processes to remove Aß. Aß transiently induces expression of LC3B gene and turns on a prolonged transcription of SQSTM1 gene. The Aß-induced astrocytic autophagy accelerates urea cycle and putrescine degradation pathway. Pharmacological inhibition of autophagy exacerbates mitochondrial dysfunction and oxidative stress in astrocytes. Astrocyte-specific knockdown of LC3B and SQSTM1 significantly increases Aß plaque formation and GFAP-positive astrocytes in APP/PS1 mice, along with a significant reduction of neuronal marker and cognitive function. In contrast, astrocyte-specific overexpression of LC3B reduced Aß aggregates in the brain of APP/PS1 mice. An increase of LC3B and SQSTM1 protein is found in astrocytes of the hippocampus in AD patients. CONCLUSIONS: Taken together, our data indicates that Aß-induced astrocytic autophagic plasticity is an important cellular event to modulate Aß clearance and maintain cognitive function in AD mice.