Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 286(28): 24714-25, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21602569

RESUMEN

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that cause loss of function of the CFTR channel on the apical surface of epithelial cells. The major CF-causing mutation, F508del-CFTR, is misfolded, retained in the endoplasmic reticulum, and degraded. Small molecule corrector compounds have been identified using high throughput screens, which partially rescue the trafficking defect of F508del-CFTR, allowing a fraction of the mutant protein to escape endoplasmic reticulum retention and traffic to the plasma membrane, where it exhibits partial function as a cAMP-regulated chloride channel. A subset of such corrector compounds binds directly to the mutant protein, prompting the hypothesis that they rescue the biosynthetic defect by inducing improved protein conformation. We tested this hypothesis directly by evaluating the consequences of a corrector compound on the conformation of each nucleotide binding domain (NBD) in the context of the full-length mutant protein in limited proteolytic digest studies. Interestingly, we found that VRT-325 was capable of partially restoring compactness in NBD1. However, VRT-325 had no detectable effect on the conformation of the second half of the molecule. In comparison, ablation of the di-arginine sequence, R(553)XR(555) (F508del-KXK-CFTR), modified protease susceptibility of NBD1, NBD2, and the full-length protein. Singly, each intervention led to a partial correction of the processing defect. Together, these interventions restored processing of F508del-CFTR to near wild type. Importantly, however, a defect in NBD1 conformation persisted, as did a defect in channel activation after the combined interventions. Importantly, this defect in channel activation can be fully corrected by the addition of the potentiator, VX-770.


Asunto(s)
Aminofenoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mutación , Piperazinas/farmacología , Pliegue de Proteína/efectos de los fármacos , Quinazolinas/farmacología , Quinolonas/farmacología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína
2.
Ann Neurol ; 67(6): 802-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20517942

RESUMEN

OBJECTIVE: Individuals with cystic fibrosis (CF) have exercise intolerance and skeletal muscle weakness not solely attributable to physical inactivity or pulmonary function abnormalities. CF transmembrane conductance regulator (CFTR) has been demonstrated in human bronchial smooth and cardiac muscle. Using (31)P-magnetic resonance spectroscopy of skeletal muscle, we showed CF patients to have lower resting muscle adenosine triphosphate and delayed phosphocreatine recovery times after high-intensity exercise, suggesting abnormal muscle aerobic metabolism; and higher end-exercise pH values, suggesting altered bicarbonate transport. Our objective was to study CFTR expression in human skeletal muscle. METHODS AND RESULTS: We studied CFTR expression in human skeletal muscle by Western blot with anti-CFTR antibody (Ab) L12B4 and demonstrated a single band with expected molecular weight of 168kDa. We isolated the cDNA by reverse transcription polymerase chain reaction and directly sequenced a 975bp segment (c. 3,600-4,575) that was identical to the human CFTR sequence. We showed punctate staining of CFTR in sarcoplasm and sarcolemma by immunofluorescence microscopy with L12B4 Ab and secondary Alexa 488-labeled Ab. We confirmed CFTR expression in the sarcotubular network and sarcolemma by electron microscopy, using immunogold-labeled anti-CFTR Ab. We observed activation of CFTR Cl(-) channels with iodide efflux, on addition of forskolin, 3-isobutyl-1-methyl-xanthine, and 8-chlorphenylthio-cyclic adenosine monophosphate, in wild-type C57BL/6J isolated muscle fibers in contrast to no efflux from mutant F508del-CFTR muscle. INTERPRETATION: We speculate that a defect in sarcoplasmic reticulum CFTR Cl(-) channels could alter the electrochemical gradient, causing dysregulation of Ca(2+) homeostasis, for example, ryanodine receptor or sarco(endo)plasmic reticulum Ca(2+) adenosine triphosphatases essential to excitation-contraction coupling leading to exercise intolerance and muscle weakness in CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Animales , Colforsina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Inmunoelectrónica/métodos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Mutación/genética , Inhibidores de Fosfodiesterasa/farmacología , Sarcolema/metabolismo , Sarcolema/ultraestructura , Fracciones Subcelulares/metabolismo
3.
Mol Pharmacol ; 78(3): 411-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20501743

RESUMEN

The deletion of Phe-508 (F508del) constitutes the most prevalent cystic fibrosis-causing mutation. This mutation leads to cystic fibrosis transmembrane conductance regulator (CFTR) misfolding and retention in the endoplasmic reticulum and altered channel activity in mammalian cells. This folding defect can however be partially overcome by growing cells expressing this mutant protein at low (27 degrees C) temperature. Chemical "correctors" have been identified that are also effective in rescuing the biosynthetic defect in F508del-CFTR, thereby permitting its functional expression at the cell surface. The mechanism of action of chemical correctors remains unclear, but it has been suggested that certain correctors [including 4-cyclohexyloxy-2-(1-[4-(4-methoxy-benzenesulfonyl)-piperazin-1-yl]-ethyl)-quinazoline (VRT-325)] may act to promote trafficking by interacting directly with the mutant protein. To test this hypothesis, we assessed the effect of VRT-325 addition on the channel activity of F508del-CFTR after its surface expression had been "rescued" by low temperature. It is noteworthy that short-term pretreatment with VRT-325 [but not with an inactive analog, 4-hydroxy-2-(1-[4-(4-methoxy-benzenesulfonyl)-piperazin-1-yl]-ethyl)-quinazoline (VRT-186)], caused a modest but significant inhibition of cAMP-mediated halide flux. Furthermore, VRT-325 decreased the apparent ATP affinity of purified and reconstituted F508del-CFTR in our ATPase activity assay, an effect that may account for the decrease in channel activity by temperature-rescued F508del-CFTR. These findings suggest that biosynthetic rescue mediated by VRT-325 may be conferred (at least in part) by direct modification of the structure of the mutant protein, leading to a decrease in its ATP-dependent conformational dynamics. Therefore, the challenge for therapy discovery will be the design of small molecules that bind to promote biosynthetic maturation of the major mutant without compromising its activity in vivo.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Animales , Cricetinae , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Mutación , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina/fisiología , Piperazinas , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Quinazolinas/metabolismo , Eliminación de Secuencia
4.
Mol Pharmacol ; 75(6): 1430-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19339490

RESUMEN

The deletion of Phe-508 (DeltaPhe508) constitutes the most prevalent of a number of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that cause cystic fibrosis (CF). This mutation leads to CFTR misfolding and retention in the endoplasmic reticulum, as well as impaired channel activity. The biosynthetic defect can be partially overcome by small-molecule "correctors"; once at the cell surface, small-molecule "potentiators" enhance the channel activity of DeltaPhe508-CFTR. Certain compounds, such as VRT-532, exhibit both corrector and potentiator functions. In the current studies, we confirmed that the inherent chloride channel activity of DeltaPhe508-CFTR (after biosynthetic rescue) is potentiated in studies of intact cells and membrane vesicles. It is noteworthy that we showed that the ATPase activity of the purified and reconstituted mutant protein is directly modulated by binding of VRT-532 [4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)-phenol] ATP turnover by reconstituted DeltaPhe508-CFTR is decreased by VRT-532 treatment, an effect that may account for the increase in channel open time induced by this compound. To determine whether the modification of DeltaPhe508-CFTR function caused by direct VRT-532 binding is associated with structural changes, we evaluated the effect of VRT-532 binding on the protease susceptibility of the major mutant. We found that binding of VRT-532 to DeltaPhe508-CFTR led to a minor but significant decrease in the trypsin susceptibility of the full-length mutant protein and a fragment encompassing the second half of the protein. These findings suggest that direct binding of this small molecule induces and/or stabilizes a structure that promotes the channel open state and may underlie its efficacy as a corrector of DeltaPhe508-CFTR.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cresoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pirazoles/farmacología , Animales , Línea Celular , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Mutación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
5.
PLoS One ; 14(8): e0220984, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31408507

RESUMEN

Cystic Fibrosis is caused by mutations in the CFTR anion channel, many of which cause its misfolding and degradation. CFTR folding depends on the Hsc70 and Hsp70 chaperones and their co-chaperone DNAJA1, but Hsc70/Hsp70 is also involved in CFTR degradation. Here, we address how these opposing functions are balanced. DNAJA2 and DNAJA1 were both important for CFTR folding, however overexpressing DNAJA2 but not DNAJA1 enhanced CFTR degradation at the endoplasmic reticulum by Hsc70/Hsp70 and the E3 ubiquitin ligase CHIP. Excess Hsp70 also promoted CFTR degradation, but this occurred through the lysosomal pathway and required CHIP but not complex formation with HOP and Hsp90. Notably, the Hsp70 inhibitor MKT077 enhanced levels of mature CFTR and the most common disease variant ΔF508-CFTR, by slowing turnover and allowing delayed maturation, respectively. MKT077 also boosted the channel activity of ΔF508-CFTR when combined with the corrector compound VX809. Thus, the Hsp70 system is the major determinant of CFTR degradation, and its modulation can partially relieve the misfolding phenotype.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteolisis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células HEK293 , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSP40/genética , Células HeLa , Humanos , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
J Cell Physiol ; 214(1): 273-80, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17620322

RESUMEN

The chloride channel, ClC-2 is expressed ubiquitously and participates in multiple physiological processes. In particular, ClC-2 has been implicated in the regulation of neuronal chloride ion homeostasis and mutations in ClC-2 are associated with idiopathic generalized epilepsy. Despite the physiological and pathophysiological significance of this channel, its regulation remains incompletely understood. The functional expression of ClC-2 at the cell surface has been shown to be enhanced by depletion of cellular ATP, implicating its possible role in cellular energy sensing. In the present study, biochemical assays of cell surface expression suggest that this gain of function reflects, in part, an increase in channel number due to the reduction in ClC-2 internalization by endocytosis. Cell surface expression of the disease-causing mutant: G715E, thought to lack wild-type nucleotide binding affinity, is similarly affected, suggesting that ATP-depletion modifies the function of proteins in the endocytic pathway rather than ClC-2 directly. Using a combination of immunofluorescence and biochemical studies, we confirmed that ClC-2 is internalized via dynamin-dependent endocytosis and that the change in surface expression evoked by ATP depletion is partially mimicked by inhibition of dynamin function using a dynamin dominant-negative mutant (DynK44A). Furthermore, trafficking via the early endosomal compartment occurs in part through rab5-associated vesicles and recycling of ClC-2 to the cell surface occurs through a rab11 dependent pathway. In summary, we have determined that the internalization of ClC-2 by endocytosis is inhibited by metabolic stress, highlighting the importance for understanding the molecular mechanisms mediating the endosomal trafficking of this channel.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales de Cloruro/metabolismo , Endocitosis , Actinas/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Antimetabolitos/farmacología , Biotinilación , Canales de Cloruro CLC-2 , Células COS , Carbocianinas , Canales de Cloruro/genética , Chlorocebus aethiops , ADN Complementario , Desoxiglucosa/farmacología , Dinaminas/metabolismo , Endosomas/metabolismo , Fluoresceína-5-Isotiocianato , Técnica del Anticuerpo Fluorescente Indirecta , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutación , Proteínas/metabolismo , Ratas , Rotenona/farmacología , Transfección , Desacopladores/farmacología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo
7.
Arch Biochem Biophys ; 476(1): 95-100, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18417076

RESUMEN

CFTR is a member of the ABC (ATP binding cassette) superfamily of transporters. It is a multidomain membrane protein, which utilizes ATP to regulate the flux of its substrate through the membrane. CFTR is distinct in that it functions as a channel and it possesses a unique regulatory R domain. There has been significant progress in understanding the molecular basis for CFTR activity as an ATPase. The dimeric complex of NBD structures seen in prokaryotic ABC transporters, together with the structure of an isolated CF-NBD1, provide a unifying molecular template to model the structural basis for the ATPase activity of CFTR. The dynamic nature of the interaction between the NBDs and the R domain has been revealed in NMR studies. On the other hand, understanding the mechanisms mediating the transmission of information from the cytosolic domains to the membrane and the channel gate of CFTR remains a central challenge.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Modelos Moleculares , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Dimerización , Activación Enzimática , Humanos , Conformación Proteica , Estructura Terciaria de Proteína
8.
Essays Biochem ; 50(1): 233-48, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21967060

RESUMEN

Mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) cause CF (cystic fibrosis), a fatal genetic disease commonly leading to airway obstruction with recurrent airway inflammation and infection. Pulmonary obstruction in CF has been linked to the loss of CFTR function as a regulated Cl- channel on the lumen-facing membrane of the epithelium lining the airways. We have learned much about the molecular basis for nucleotide- and phosphorylation-dependent regulation of channel activity of the normal (wild-type) version of the CFTR protein through electrophysiological studies. The major CF-causing mutation, F508del-CFTR, causes the protein to misfold and be retained in the ER (endoplasmic reticulum). Importantly, recent studies in cell culture have shown that retention in the ER can be 'corrected' through the application of certain small-molecule modulators and, once at the surface, the altered channel function of the major mutant can be 'potentiated', pharmacologically. Importantly, two such small molecules, a 'corrector' (VX-809) and a 'potentiator' (VX-770) compound are undergoing clinical trial for the treatment of CF. In this chapter, we describe recent discoveries regarding the wild-type CFTR and F508del-CFTR protein, in the context of molecular models based on X-ray structures of prokaryotic ABC (ATP-binding cassette) proteins. Finally, we discuss the promise of small-molecule modulators to probe the relationship between structure and function in the wild-type protein, the molecular defects caused by the most common mutation and the structural changes required to correct these defects.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Humanos , Activación del Canal Iónico , Modelos Moleculares , Mutación , Fosforilación , Conformación Proteica
9.
J Med Chem ; 54(24): 8693-701, 2011 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-22074181

RESUMEN

Cystic fibrosis is a genetic disease caused by mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. In vitro experiments have demonstrated that 4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)phenol (VRT-532, 1) is able to partially restore the function of mutant CFTR proteins. To help elucidate the nature of the interactions between 1 and mutant CFTR, molecular probes based on the structure of 1 have been prepared. These include a photoreactive aryl azide derivative 11 and a fluorescent dansyl sulfonamide 15. Additionally, a method for hydrogen isotope exchange on 1 has been developed, which could be used for the incorporation of radioactive tritium. Using iodide efflux assays, the probe molecules have been demonstrated to modulate the activity of mutant CFTR in the same manner as 1. These probe molecules enable a number of biochemical experiments aimed at understanding how 1 rescues the function of mutant CFTR. This understanding can in turn aid in the design and development of more efficacious compounds which may serve as therapeutic agents in the treatment of cystic fibrosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Colorantes Fluorescentes/síntesis química , Sondas Moleculares/síntesis química , Etiquetas de Fotoafinidad/síntesis química , Animales , Azidas/síntesis química , Azidas/química , Azidas/farmacología , Línea Celular , Cresoles/farmacología , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Compuestos de Dansilo/síntesis química , Compuestos de Dansilo/química , Compuestos de Dansilo/farmacología , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Marcaje Isotópico , Sondas Moleculares/química , Sondas Moleculares/farmacología , Mutación , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/farmacología , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacología , Relación Estructura-Actividad , Tritio
10.
J Control Release ; 137(1): 2-7, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19285529

RESUMEN

The intracellular delivery of a diverse array of cargos can be mediated by conjugation to cell-penetrating peptides (CPPs). To date, delivery of cargos into the cytosol via CPPs has been measured indirectly and normally, has been inferred from changes in biological activity. We describe a novel method to directly assay CPP-mediated delivery of peptide cargo into the cytosol, and use this method to define the kinetics of this process. The CPP and the cargo are differentially labeled with the fluorophores FAM (carboxyfluorescein), and TAMRA (carboxytetramethylrhodamine) respectively, and coupled via a disulfide bond to promote quenching of FAM fluorescence by the proximal TAMRA. Delivery of the peptide pair to cells produces an increase in FAM fluorescence within 10 min, consistent with its rapid transfer into the reducing environment of the cytosol, separation of the two components, and concomitant dequenching. The fluorescence-based assay described here can thus be used to select a CPP module that is optimized for efficient delivery of particular cargos designed to modify molecular targets in the cytosol.


Asunto(s)
Citosol/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Línea Celular , Disulfuros/metabolismo , Fluoresceína/metabolismo , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Riñón/citología , Modelos Biológicos , Datos de Secuencia Molecular , Oxidantes/farmacología , Oxidación-Reducción , Péptidos/química , Pinocitosis , Unión Proteica , Transporte de Proteínas , Rodaminas/metabolismo , Temperatura , Factores de Tiempo
11.
Chem Biol ; 16(5): 520-30, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19477416

RESUMEN

The cystic fibrosis (CF)-causing mutant, deltaF508-CFTR, is misfolded and fails to traffic out of the endoplasmic reticulum (ER) to the cell surface. Introduction of second site mutations that disrupt a diarginine (RXR)-based ER retention motif in the first nucleotide binding domain rescues the trafficking defect of deltaF508-CFTR, supporting a role for these motifs in mediating ER retention of the major mutant. To determine if these RXR motifs mediate retention of the native deltaF508-CFTR protein in situ, we generated peptides that mimic these motifs and should antagonize mistrafficking mediated via their aberrant exposure. Here we show robust rescue of deltaF508-CFTR in cell lines and in respiratory epithelial tissues by transduction of RXR motif-mimetics, showing that abnormal accessibility of this motif is a key determinant of mistrafficking of the major CF-causing mutant.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Péptidos/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Péptidos/síntesis química , Péptidos/metabolismo , Mucosa Respiratoria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA