Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Protein Expr Purif ; 183: 105861, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33667651

RESUMEN

Sensitive and specific serology tests are essential for epidemiological and public health studies of COVID-19 and for vaccine efficacy testing. The presence of antibodies to SARS-CoV-2 surface glycoprotein (Spike) and, specifically, its receptor-binding domain (RBD) correlates with inhibition of SARS-CoV-2 binding to the cellular receptor and viral entry into the cells. Serology tests that detect antibodies targeting RBD have high potential to predict COVID-19 immunity and to accurately determine the extent of the vaccine-induced immune response. Cost-effective methods of expression and purification of Spike and its fragments that preserve antigenic properties are essential for development of such tests. Here we describe a method of production of His6-tagged S319-640 fragment containing RBD in E. coli. It includes expression of the fragment, solubilization of inclusion bodies, and on-the-column refolding. The antigenic properties of the resulting product are similar, but not identical to the RBD-containing fragment expressed in human cells.


Asunto(s)
COVID-19/virología , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Sitios de Unión , Clonación Molecular , Escherichia coli/química , Escherichia coli/genética , Expresión Génica , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Dominios Proteicos , Replegamiento Proteico , SARS-CoV-2/genética , Solubilidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación
2.
Mol Cell ; 46(1): 18-29, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22405652

RESUMEN

UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA strand stall transcription elongation by RNA polymerase II (Pol II). If the nucleotide excision repair machinery does not promptly remove the CPDs, stalled Pol II creates a roadblock for DNA replication and subsequent rounds of transcription. Here we present evidence that Pol II has an intrinsic capacity for translesion synthesis (TLS) that enables bypass of the CPD with or without repair. Translesion synthesis depends on the trigger loop and bridge helix, the two flexible regions of the Pol II subunit Rpb1 that participate in substrate binding, catalysis, and translocation. Substitutions in Rpb1 that promote lesion bypass in vitro increase UV resistance in vivo, and substitutions that inhibit lesion bypass decrease cell survival after UV irradiation. Thus, translesion transcription becomes essential for cell survival upon accumulation of the unrepaired CPD lesions in genomic DNA.


Asunto(s)
Daño del ADN/efectos de la radiación , Dímeros de Pirimidina/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Replicación del ADN/genética , Replicación del ADN/efectos de la radiación , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Genoma Fúngico/fisiología , Dímeros de Pirimidina/genética , ARN Polimerasa II/genética , Tolerancia a Radiación/genética , Tolerancia a Radiación/efectos de la radiación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/genética
3.
Proc Natl Acad Sci U S A ; 112(16): E1984-93, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848054

RESUMEN

Escherichia coli and yeast DNA-dependent RNA polymerases are shown to mediate efficient nascent transcript stem loop formation-dependent RNA-DNA hybrid realignment. The realignment was discovered on the heteropolymeric sequence T5C5 and yields transcripts lacking a C residue within a corresponding U5C4. The sequence studied is derived from a Roseiflexus insertion sequence (IS) element where the resulting transcriptional slippage is required for transposase synthesis. The stability of the RNA structure, the proximity of the stem loop to the slippage site, the length and composition of the slippage site motif, and the identity of its 3' adjacent nucleotides (nt) are crucial for transcripts lacking a single C. In many respects, the RNA structure requirements for this slippage resemble those for hairpin-dependent transcription termination. In a purified in vitro system, the slippage efficiency ranges from 5% to 75% depending on the concentration ratios of the nucleotides specified by the slippage sequence and the 3' nt context. The only previous proposal of stem loop mediated slippage, which was in Ebola virus expression, was based on incorrect data interpretation. We propose a mechanical slippage model involving the RNAP translocation state as the main motor in slippage directionality and efficiency. It is distinct from previously described models, including the one proposed for paramyxovirus, where following random movement efficiency is mainly dependent on the stability of the new realigned hybrid. In broadening the scope for utilization of transcription slippage for gene expression, the stimulatory structure provides parallels with programmed ribosomal frameshifting at the translation level.


Asunto(s)
Conformación de Ácido Nucleico , ARN Mensajero/química , Regiones Terminadoras Genéticas , Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Chloroflexi/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Inversión de Secuencia
4.
Protein Expr Purif ; 134: 1-10, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28323168

RESUMEN

Recent publications have shown that active RNA polymerase (RNAP) from Mycobacterium tuberculosis (MtbRNAP) can be produced by expressing all four subunits in a single recombinant Escherichia coli strain [1-3]. By reducing the number of plasmids and changing the codon usage of the Mtb genes in the co-expression system published by Banerjee et al. [1], we present a simplified, detailed and reproducible protocol for the purification of recombinant MtbRNAP containing the ω subunit. Moreover, we describe the formation of ternary elongation complexes (TECs) with a short fluorescence-labeled RNA primer and DNA oligonucleotides, suitable for transcription elongation studies. The purification of milligram quantities of the pure and highly active holoenzyme omits ammonium sulfate or polyethylene imine precipitation steps [4] and requires only 5 g of wet cells. Our results indicate that subunit assemblies other than α2ßß'ω·σA can be separated by ion-exchange chromatography on Mono Q column and that assemblies with the wrong RNAP subunit stoichiometry lack transcriptional activity. We show that MtbRNAP TECs can be stalled by NTP substrate deprivation and chased upon the addition of missing NTP(s) without the need of any accessory proteins. Finally, we demonstrate the ability of the purified MtbRNAP to initiate transcription from a promoter and establish that its open promoter complexes are stabilized by the M. tuberculosis protein CarD.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Regiones Promotoras Genéticas , Transcripción Genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/biosíntesis , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Holoenzimas/biosíntesis , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
5.
Proc Natl Acad Sci U S A ; 111(23): E2368-75, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24853501

RESUMEN

The Nun protein of coliphage HK022 arrests RNA polymerase (RNAP) in vivo and in vitro at pause sites distal to phage λ N-Utilization (nut) site RNA sequences. We tested the activity of Nun on ternary elongation complexes (TECs) assembled with templates lacking the λ nut sequence. We report that Nun stabilizes both translocation states of RNAP by restricting lateral movement of TEC along the DNA register. When Nun stabilized TEC in a pretranslocated register, immediately after NMP incorporation, it prevented binding of the next NTP and stimulated pyrophosphorolysis of the nascent transcript. In contrast, stabilization of TEC by Nun in a posttranslocated register allowed NTP binding and nucleotidyl transfer but inhibited pyrophosphorolysis and the next round of forward translocation. Nun binding to and action on the TEC requires a 9-bp RNA-DNA hybrid. We observed a Nun-dependent toe print upstream to the TEC. In addition, mutations in the RNAP ß' subunit near the upstream end of the transcription bubble suppress Nun binding and arrest. These results suggest that Nun interacts with RNAP near the 5' edge of the RNA-DNA hybrid. By stabilizing translocation states through restriction of TEC lateral mobility, Nun represents a novel class of transcription arrest factors.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , ADN Viral/química , ADN Viral/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Difosfatos/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Nucleótidos/genética , Nucleótidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Viral/química , ARN Viral/genética , Moldes Genéticos , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas Virales/química , Proteínas Virales/genética
6.
PLoS Genet ; 10(9): e1004532, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25232834

RESUMEN

We developed a highly sensitive assay to detect transcription errors in vivo. The assay is based on suppression of a missense mutation in the active site tyrosine in the Cre recombinase. Because Cre acts as tetramer, background from translation errors are negligible. Functional Cre resulting from rare transcription errors that restore the tyrosine codon can be detected by Cre-dependent rearrangement of reporter genes. Hence, transient transcription errors are captured as stable genetic changes. We used this Cre-based reporter to screen for mutations of Saccharomyces cerevisiae RPB1 (RPO21) that increase the level of misincorporation during transcription. The mutations are in three domains of Rpb1, the trigger loop, the bridge helix, and in sites involved in binding to TFIIS. Biochemical characterization demonstrates that these variants have elevated misincorporation, and/or ability to extend mispaired bases, or defects in TFIIS mediated editing.


Asunto(s)
ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcripción Genética/genética , Secuencia de Aminoácidos , Dominio Catalítico/genética , Codón/genética , Regulación Fúngica de la Expresión Génica/genética , Genes Reporteros/genética , Datos de Secuencia Molecular , Mutación/genética
7.
Mol Cell ; 30(5): 557-66, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18538654

RESUMEN

To study fidelity of RNA polymerase II (Pol II), we analyzed properties of the 6-azauracil-sensitive and TFIIS-dependent E1103G mutant of rbp1 (rpo21), the gene encoding the catalytic subunit of Pol II in Saccharomyces cerevisiae. Using an in vivo retrotransposition-based transcription fidelity assay, we observed that rpb1-E1103G causes a 3-fold increase in transcription errors. This mutant showed a 10-fold decrease in fidelity of transcription elongation in vitro. The mutation does not appear to significantly affect translocation state equilibrium of Pol II in a stalled elongation complex. Primarily, it promotes NTP sequestration in the polymerase active center. Furthermore, pre-steady-state analyses revealed that the E1103G mutation shifted the equilibrium between the closed and the open active center conformations toward the closed form. Thus, open conformation of the active center emerges as an intermediate essential for preincorporation fidelity control. Similar mechanisms may control fidelity of DNA-dependent DNA polymerases and RNA-dependent RNA polymerases.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Mutación/genética , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Dominio Catalítico , Isomerismo , Datos de Secuencia Molecular , Nucleótidos/metabolismo , ARN Polimerasa II/genética , Retroelementos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Especificidad por Sustrato
8.
Nucleic Acids Res ; 42(3): 2085-97, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24194608

RESUMEN

Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates.


Asunto(s)
ADN/química , ARN/química , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Moleculares , Interferencia de ARN , ARN Polimerasa II/metabolismo , Termodinámica , Transcripción Genética
9.
Biochim Biophys Acta ; 1829(2): 187-98, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23202476

RESUMEN

The bridge α-helix in the ß' subunit of RNA polymerase (RNAP) borders the active site and may have roles in catalysis and translocation. In Escherichia coli RNAP, a bulky hydrophobic segment near the N-terminal end of the bridge helix is identified (ß' 772-YFI-774; the YFI motif). YFI is located at a distance from the active center and adjacent to a glycine hinge (ß' 778-GARKG-782) involved in dynamic bending of the bridge helix. Remarkably, amino acid substitutions in YFI significantly alter intrinsic termination, pausing, fidelity and translocation of RNAP. F773V RNAP largely ignores the λ tR2 terminator at 200µM NTPs and is strongly reduced in λ tR2 recognition at 1µM NTPs. F773V alters RNAP pausing and backtracking and favors misincorporation. By contrast, the adjacent Y772A substitution increases fidelity and exhibits other transcriptional defects generally opposite to those of F773V. All atom molecular dynamics simulation revealed two separate functional connections emanating from YFI explaining the distinct effects of substitutions: Y772 communicates with the active site through the link domain in the ß subunit, whereas F773 communicates through the fork domain in the ß subunit. I774 interacts with the F-loop, which also contacts the glycine hinge of the bridge helix. These results identified negative and positive circuits coupled at YFI and employed for regulation of catalysis, elongation, termination and translocation.


Asunto(s)
Secuencias de Aminoácidos , Catálisis , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , ARN Polimerasas Dirigidas por ADN/metabolismo , Cinética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis , Conformación Proteica , Estructura Secundaria de Proteína
10.
PLoS Pathog ; 8(11): e1003030, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166498

RESUMEN

Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2'-C-methyl, 4'-methyl and 4'-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2'-C-methyl, 4'-methyl and 4'-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.


Asunto(s)
Antivirales/farmacología , Núcleo Celular/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Hepacivirus/metabolismo , Mitocondrias/metabolismo , ARN Polimerasa II/metabolismo , Ribonucleósidos/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Antivirales/efectos adversos , Bovinos , Línea Celular , Hepatitis C/tratamiento farmacológico , Hepatitis C/enzimología , ARN Viral/biosíntesis , Ribonucleósidos/efectos adversos
11.
J Biol Chem ; 286(35): 30898-30910, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21730074

RESUMEN

Fork loop 2 is a small semiconservative segment of the larger fork domain in the second largest Rpb2 subunit of RNA polymerase II (Pol II). This flexible loop, juxtaposed at the leading edge of transcription bubble, has been proposed to participate in DNA strand separation, translocation along DNA, and NTP loading to Pol II during elongation. Here we show that the Rpb2 mutant carrying a deletion of the flexible part of the loop is not lethal in yeast. The mutation exhibits no defects in DNA melting and translocation in vitro but confers a moderate decrease of the catalytic activity of the enzyme caused by the impaired sequestration of the NTP substrate in the active center prior to catalysis. In the structural model of the Pol II elongation complex, fork loop 2 directly interacts with an unpaired DNA residue in the non-template DNA strand one nucleotide ahead from the active center (the i+2 position). We showed that elimination of this putative interaction by replacement of the i+2 residue with an abasic site inhibits Pol II activity to the same degree as the deletion of fork loop 2. This replacement has no detectable effect on the activity of the mutant enzyme. We provide direct evidence that interaction of fork loop 2 with the non-template DNA strand facilitates NTP sequestration through interaction with the adjacent segment of the fork domain involved in the active center of Pol II.


Asunto(s)
ARN Polimerasa II/química , Thermus thermophilus/enzimología , Transcripción Genética , Secuencia de Aminoácidos , Animales , Catálisis , Dominio Catalítico , Bovinos , ADN/metabolismo , Exodesoxirribonucleasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Permanganato de Potasio/química , Unión Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Proc Natl Acad Sci U S A ; 106(22): 8900-5, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19416863

RESUMEN

Sequence-specific pausing of multisubunit RNA polymerases (RNAPs) represents a rate-limiting step during transcription elongation. Pausing occurs on average every 100 bases of DNA. Several models have been proposed to explain pausing, including backtracking of the ternary elongation complex, delay of translocation of the enzyme along DNA, or a conformational change in the active site preventing formation of the phosphodiester bond. Here, we performed biochemical characterization of previously-reported pauses of Escherichia coli RNAP and found that they are not associated with backtracking or a translocation delay. Instead, the paused complex contains the 3' end of the transcript in the active center and is capable of binding the next cognate NTP. However, bond formation occurs much slower in the paused complex compared with its fully-active counterpart. The pausing is dramatically decreased by a substitution of the base encoding the next incoming NTP and the base encoding the 3' end of the nascent RNA, suggesting that (mis)-alignment of the 3' end of the RNA and the incoming NTP in the active site is crucial for pausing. These pause sites are conserved between E. coli and Thermus thermophilus RNAPs, but are not recognized by Saccharomyces cerevisiae RNAP II, indicating that prokaryotic RNAPs might be more sensitive to the changes in the alignment of the nascent transcript and the substrate NTP in the active site.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ADN/metabolismo , Escherichia coli/enzimología , ARN Mensajero/biosíntesis , Transcripción Genética , Bacteriófago T7/genética , Secuencia de Bases , Dominio Catalítico , Secuencia Conservada , ADN/química , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Nucleótidos/química , Nucleótidos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
14.
Nucleic Acids Res ; 35(4): 1075-84, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17264130

RESUMEN

Expansions of (GAA)n repeats within the first intron of the frataxin gene reduce its expression, resulting in a hereditary neurodegenerative disorder, Friedreich's ataxia. While it is generally believed that expanded (GAA)n repeats block transcription elongation, fine mechanisms responsible for gene repression are not fully understood. To follow the effects of (GAA)n*(TTC)n repeats on gene expression, we have chosen E. coli as a convenient model system. (GAA)n*(TTC)n repeats were cloned into bacterial plasmids in both orientations relative to a promoter, and their effects on transcription and RNA stability were evaluated both in vitro and in vivo. Expanded (GAA)n repeats in the sense strand for transcription caused a significant decrease in the mRNA levels in vitro and in vivo. This decrease was likely due to the tardiness of the RNA polymerase within expanded (GAA)n runs but was not accompanied by the enzyme's dissociation and premature transcription termination. Unexpectedly, positioning of normal- and carrier-size (TTC)n repeats into the sense strand for transcription led to the appearance of RNA transcripts that were truncated within those repetitive runs in vivo. We have determined that these RNA truncations are consistent with cleavage of the full-sized mRNAs at (UUC)n runs by the E. coli degradosome.


Asunto(s)
Proteínas de Unión a Hierro/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , Transcripción Genética , Expansión de Repetición de Trinucleótido , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Humanos , Proteínas de Unión a Hierro/metabolismo , ARN Mensajero/biosíntesis , Frataxina
15.
J Mol Biol ; 431(14): 2528-2542, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31029704

RESUMEN

RNA polymerase can cleave a phosphodiester bond at the 3' end of a nascent RNA in the presence of pyrophosphate producing NTP. Pyrophosphorolysis has been characterized during elongation steps of transcription where its rate is significantly slower than the forward rate of NMP addition. In contrast, we report here that pyrophosphorolysis can occur in a millisecond time scale during the transition of Escherichia coli RNA polymerase from initiation to elongation at the psbA2 promoter. This rapid pyrophosphorolysis occurs during productive RNA synthesis as opposed to abortive RNA synthesis. Dissociation of σ70 or RNA extension beyond nine nucleotides dramatically reduces the rate of pyrophosphorolysis. We argue that the rapid pyrophosphorolysis allows iterative cycles of cleavage and re-synthesis of the 3' phosphodiester bond by the productive complexes in the early stage of transcription. This iterative process may provide an opportunity for the σ70 to dissociate from the RNA exit channel of the enzyme, enabling RNA to extend through the channel.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Difosfatos/metabolismo , Escherichia coli/enzimología , ARN Bacteriano/genética , Factor sigma/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética , Fosforilación , Regiones Promotoras Genéticas , Factor sigma/genética
16.
Genetics ; 172(4): 2201-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16510790

RESUMEN

RNA polymerase II (RNAPII) in eukaryotic cells drives transcription of most messenger RNAs. RNAPII core enzyme is composed of 12 polypeptides where Rpb1 is the largest subunit. To further understand the mechanisms of RNAPII transcription, we isolated and characterized novel point mutants of RPB1 that are sensitive to the nucleotide-depleting drug 6-azauracil (6AU). In this work we reisolated the rpo21-24/rpb1-E1230K allele, which reduces the interaction of RNAPII-TFIIS, and identified five new point mutations in RPB1 that cause hypersensitivity to 6AU. The novel mutants affect highly conserved residues of Rpb1 and have differential genetic and biochemical effects. Three of the mutations affect the "lid" and "rudder," two small loops suggested by structural studies to play a central role in the separation of the RNA-DNA hybrids. Most interestingly, two mutations affecting the catalytic center (rpb1-N488D) and the homology box G (rpb1-E1103G) have strong opposite effects on the intrinsic in vitro polymerization rate of RNAPII. Moreover, the synthetic interactions of these mutants with soh1, spt4, and dst1 suggest differential in vivo effects.


Asunto(s)
Mutación , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Uracilo/análogos & derivados , Secuencia de Aminoácidos , Antimetabolitos/farmacología , Dominio Catalítico , ADN/química , Datos de Secuencia Molecular , Péptidos/química , Mutación Puntual , ARN/química , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Uracilo/farmacología
17.
Methods Mol Biol ; 1632: 91-105, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28730434

RESUMEN

RNA nanoparticles consisting of multiple RNA strands of different sequences forming various three-dimensional structures emerge as promising carriers of siRNAs, RNA aptamers, and ribozymes. In vitro transcription of a mixture of dsDNA templates encoding all the subunits of the RNA nanoparticle may result in cotranscriptional self-assembly of the nanoparticle. Based on our experience with production of RNA nanorings, RNA nanocubes, and RNA three-way junctions, we propose a strategy for optimization of the cotranscriptional production of chemically modified ribonuclease-resistant RNA nanoparticles.


Asunto(s)
Nanopartículas , ARN/química , ARN/genética , Transcripción Genética , Regiones no Traducidas 5' , Secuencia de Bases , Halogenación , Mutación
18.
Genetics ; 206(1): 179-187, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28341651

RESUMEN

We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.


Asunto(s)
Proteínas de Escherichia coli/genética , Genes Reporteros/genética , Factores de Transcripción/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Elongación de Péptidos , Regiones Promotoras Genéticas , ARN/biosíntesis , ARN/genética
19.
Methods Mol Biol ; 1276: 153-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665562

RESUMEN

Accurate transcription is essential for faithful information flow from DNA to RNA and to the protein. Mechanisms of cognate substrate selection by RNA polymerases are currently elucidated by structural, genetic, and biochemical approaches. Here, we describe a fast and reliable approach to quantitative analyses of transcription fidelity, applicable to analyses of RNA polymerase selectivity against misincorporation, incorporation of dNMPs, and chemically modified rNMP analogues. The method is based on different electrophoretic mobility of RNA oligomers of the same length but differing in sequence.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Biología Molecular/métodos , Complejos Multiproteicos/metabolismo , Transcripción Genética/fisiología , Factores de Elongación Transcripcional/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Especificidad por Sustrato , Transcripción Genética/genética
20.
J Mol Biol ; 425(4): 697-712, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23238253

RESUMEN

Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3' end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA-DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIIS(AA)) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3' end of the nascent RNA in the active center of the yeast RNAP II, and TFIIS(AA) promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3' RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Secuencia de Bases , ADN de Hongos/química , ADN de Hongos/genética , Cinética , Modelos Genéticos , Mutación , Transporte de Proteínas , ARN Polimerasa II/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA