Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NPJ Regen Med ; 7(1): 48, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085325

RESUMEN

Hereditary muscle diseases are disabling disorders lacking effective treatments. UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) myopathy (GNEM) is an autosomal recessive distal myopathy with rimmed vacuoles typically manifesting in late adolescence/early adulthood. GNE encodes the rate-limiting enzyme in sialic acid biosynthesis, which is necessary for the proper function of numerous biological processes. Outside of the causative gene, very little is known about the mechanisms contributing to the development of GNE myopathy. In the present study, we aimed to address this knowledge gap by querying the underlying mechanisms of GNE myopathy using a patient-derived induced pluripotent stem-cell (iPSC) model. Control and patient-specific iPSCs were differentiated down a skeletal muscle lineage, whereby patient-derived GNEM iPSC clones were able to recapitulate key characteristics of the human pathology and further demonstrated defects in myogenic progression. Single-cell RNA sequencing time course studies revealed clear differences between control and GNEM iPSC-derived muscle precursor cells (iMPCs), while pathway studies implicated altered stress and autophagy signaling in GNEM iMPCs. Treatment of GNEM patient-derived iMPCs with an autophagy activator improved myogenic differentiation. In summary, we report an in vitro, iPSC-based model of GNE myopathy and implicate defective myogenesis as a contributing mechanism to the etiology of GNE myopathy.

2.
Hepatol Commun ; 6(2): 345-360, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34519176

RESUMEN

Primary sclerosing cholangitis (PSC) is a chronic fibroinflammatory disease of the biliary tract characterized by cellular senescence and periportal fibrogenesis. Specific disease features that are cell intrinsic and either genetically or epigenetically mediated remain unclear due in part to a lack of appropriate, patient-specific, in vitro models. Recently, our group developed systems to create induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs) and biliary epithelial organoids (cholangioids). We use these models to investigate whether PSC cholangiocytes are intrinsically predisposed to cellular senescence. Skin fibroblasts from healthy controls and subjects with PSC were reprogrammed to pluripotency, differentiated to cholangiocytes, and subsequently grown in three-dimensional matrigel-based culture to induce formation of cholangioids. RNA sequencing (RNA-seq) on iDCs showed significant differences in gene expression patterns, including enrichment of pathways associated with cell cycle, senescence, and hepatic fibrosis, that correlate with PSC. These pathways also overlapped with RNA-seq analysis on isolated cholangiocytes from subjects with PSC. Exome sequencing on the subjects with PSC revealed genetic variants of unknown significance in the genes identified in these pathways. Three-dimensional culture revealed smaller size, lack of a central lumen, and increased cellular senescence in PSC-derived cholangioids. Congruent with this, PSC-derived iDCs showed increased secretion of the extracellular matrix molecule fibronectin as well as the inflammatory cytokines interleukin-6, and chemokine (C-C motif) ligand 2. Conditioned media (CM) from PSC-derived iDCs more potently activated hepatic stellate cells compared to control CM. Conclusion: We demonstrated efficient generation of iDCs and cholangioids from patients with PSC that show disease-specific features. PSC cholangiocytes are intrinsically predisposed to cellular senescence. These features are unmasked following biliary differentiation of pluripotent stem cells and have functional consequences in epithelial organoids.


Asunto(s)
Diferenciación Celular , Senescencia Celular , Colangitis Esclerosante/patología , Células Madre Pluripotentes Inducidas/patología , Adulto , Anciano , Células Cultivadas , Colangitis Esclerosante/metabolismo , Medios de Cultivo Condicionados , Citocinas/metabolismo , Femenino , Fibroblastos , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Análisis de Secuencia de ARN , Piel/citología
3.
Cancer Res ; 81(13): 3727-3737, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771896

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) is often reported as a neurotoxic side effect of chemotherapy. Although CICI has emerged as a significant medical problem, meaningful treatments are not currently available due to a lack of mechanistic understanding underlying CICI pathophysiology. Using the platinum-based chemotherapy cisplatin as a model for CICI, we show here that cisplatin suppresses nicotinamide adenine dinucleotide (NAD+) levels in the adult female mouse brain in vivo and in human cortical neurons derived from induced pluripotent stem cells in vitro. Increasing NAD+ levels through nicotinamide mononucleotide (NMN) administration prevented cisplatin-induced abnormalities in neural progenitor proliferation, neuronal morphogenesis, and cognitive function without affecting tumor growth and antitumor efficacy of cisplatin. Mechanistically, cisplatin inhibited expression of the NAD+ biosynthesis rate-limiting enzyme nicotinamide phosphoribosyl transferase (Nampt). Selective restoration of Nampt expression in adult-born neurons was sufficient to prevent cisplatin-induced defects in dendrite morphogenesis and memory function. Taken together, our findings suggest that aberrant Nampt-mediated NAD+ metabolic pathways may be a key contributor in cisplatin-induced neurogenic impairments, thus causally leading to memory dysfunction. Therefore, increasing NAD+ levels could represent a promising and safe therapeutic strategy for cisplatin-related neurotoxicity. SIGNIFICANCE: Increasing NAD+ through NMN supplementation offers a potential therapeutic strategy to safely prevent cisplatin-induced cognitive impairments, thus providing hope for improved quality of life in cancer survivors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3727/F1.large.jpg.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cisplatino/toxicidad , Disfunción Cognitiva/prevención & control , Fármacos Neuroprotectores/farmacología , Mononucleótido de Nicotinamida/farmacología , Animales , Antineoplásicos/toxicidad , Apoptosis , Neoplasias de la Mama/patología , Proliferación Celular , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/patología , Femenino , Humanos , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA