Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Care ; 51(4): 368-73, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23269113

RESUMEN

BACKGROUND: Statistical models that identify patients at elevated risk of death or hospitalization have focused on population subsets, such as those with a specific clinical condition or hospitalized patients. Most models have limitations for clinical use. Our objective was to develop models that identified high-risk primary care patients. METHODS: Using the Primary Care Management Module in the Veterans Health Administration (VHA)'s Corporate Data Warehouse, we identified all patients who were enrolled and assigned to a VHA primary care provider on October 1, 2010. The outcome variable was the occurrence of hospitalization or death during the subsequent 90 days and 1 year. We extracted predictors from 6 categories: sociodemographics, medical conditions, vital signs, prior year use of health services, medications, and laboratory tests and then constructed multinomial logistic regression models to predict outcomes for over 4.6 million patients. RESULTS: In the predicted 95th risk percentiles, observed 90-day event rates were 19.6%, 6.2%, and 22.6%, respectively, for hospitalization, death, and either hospitalization or death, compared with population averages of 2.7%, 0.7%, and 3.4%, respectively; 1-year event rates were 42.3%, 19.4%, and 51.3%, respectively, compared with population averages of 8.2%, 2.6%, and 10.8%, respectively. The C-statistics for 90-day outcomes were 0.83, 0.86, and 0.81, respectively, for hospitalization, death, and either hospitalization or death and were 0.81, 0.85, and 0.79, respectively, for 1-year outcomes. CONCLUSIONS: Prediction models using electronic clinical data accurately identified patients with elevated risk for hospitalization or death. This information can enhance the coordination of care for patients with complex clinical conditions.


Asunto(s)
Mortalidad Hospitalaria/tendencias , Hospitalización/estadística & datos numéricos , Atención Primaria de Salud/estadística & datos numéricos , United States Department of Veterans Affairs/estadística & datos numéricos , Veteranos/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Registros Electrónicos de Salud , Femenino , Predicción , Hospitales de Veteranos , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Estudios Retrospectivos , Medición de Riesgo , Análisis de Supervivencia , Estados Unidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA