Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Microbiol ; 115(4): 503-507, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33103309

RESUMEN

Malaria caused by the protozoan parasite Plasmodium falciparum continues to impose significant morbidity and mortality, despite substantial investment into drug and vaccine development and deployment. Underlying the resilience of this parasite is its remarkable ability to undergo genome modifications, thus, providing parasite populations with extensive genetic variability that accelerates selection of drug resistance and limits the efficacy of most vaccines. This genome plasticity is rooted in the mechanisms of DNA repair that parasites employ to maintain genome integrity, a process skewed toward homologous recombination through the evolutionary loss of classical nonhomologous end joining. Repair of DNA double-strand breaks have been shown to enable "shuffling" of antigen-encoding gene sequences to vastly increase antigen diversity and to enable copy number expansion of genes that contribute to drug resistance. The latter phenomenon has been proposed to be a major contributor to the rise of resistance to several classes of antimalarial drugs. In this issue of Molecular Microbiology, McDaniels and colleagues add yet another mechanism that malaria parasites use to reduce drug susceptibility by demonstrating that P. falciparum can maintain expanded arrays of drug resistance cassettes as stably replicating, circular, extrachromosomal DNAs, thus, expanding genome plasticity beyond the parasite's 14 nuclear chromosomes.


Asunto(s)
Resistencia a Medicamentos/genética , Genoma de Protozoos , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/fisiología , Animales , Variación Antigénica , Antimaláricos/farmacología , Reparación del ADN , Humanos , Vacunas
2.
Antimicrob Agents Chemother ; 66(10): e0081722, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36094216

RESUMEN

The proteasome is a promising target for antimalarial chemotherapy. We assessed ex vivo susceptibilities of fresh Plasmodium falciparum isolates from eastern Uganda to seven proteasome inhibitors: two asparagine ethylenediamines, two macrocyclic peptides, and three peptide boronates; five had median IC50 values <100 nM. TDI8304, a macrocylic peptide lead compound with drug-like properties, had a median IC50 of 16 nM. Sequencing genes encoding the ß2 and ß5 catalytic proteasome subunits, the predicted targets of the inhibitors, and five additional proteasome subunits, identified two mutations in ß2 (I204T, S214F), three mutations in ß5 (V2I, A142S, D150E), and three mutations in other subunits. The ß2 S214F mutation was associated with decreased susceptibility to two peptide boronates, with IC50s of 181 nM and 2635 nM against mutant versus 62 nM and 477 nM against wild type parasites for MMV1579506 and MMV1794229, respectively, although significance could not be formally assessed due to the small number of mutant parasites with available data. The other ß2 and ß5 mutations and mutations in other subunits were not associated with susceptibility to tested compounds. Against culture-adapted Ugandan isolates, two asparagine ethylenediamines and the peptide proteasome inhibitors WLW-vinyl sulfone and WLL-vinyl sulfone (which were not studied ex vivo) demonstrated low nM activity, without decreased activity against ß2 S214F mutant parasites. Overall, proteasome inhibitors had potent activity against P. falciparum isolates circulating in Uganda, and genetic variation in proteasome targets was uncommon.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Inhibidores de Proteasoma , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Asparagina , Resistencia a Medicamentos/genética , Etilenodiaminas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Péptidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Uganda
3.
PLoS Biol ; 17(5): e3000271, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31083650

RESUMEN

Malaria parasites possess the remarkable ability to maintain chronic infections that fail to elicit a protective immune response, characteristics that have stymied vaccine development and cause people living in endemic regions to remain at risk of malaria despite previous exposure to the disease. These traits stem from the tremendous antigenic diversity displayed by parasites circulating in the field. For Plasmodium falciparum, the most virulent of the human malaria parasites, this diversity is exemplified by the variant gene family called var, which encodes the major surface antigen displayed on infected red blood cells (RBCs). This gene family exhibits virtually limitless diversity when var gene repertoires from different parasite isolates are compared. Previous studies indicated that this remarkable genome plasticity results from extensive ectopic recombination between var genes during mitotic replication; however, the molecular mechanisms that direct this process to antigen-encoding loci while the rest of the genome remains relatively stable were not determined. Using targeted DNA double-strand breaks (DSBs) and long-read whole-genome sequencing, we show that a single break within an antigen-encoding region of the genome can result in a cascade of recombination events leading to the generation of multiple chimeric var genes, a process that can greatly accelerate the generation of diversity within this family. We also found that recombinations did not occur randomly, but rather high-probability, specific recombination products were observed repeatedly. These results provide a molecular basis for previously described structured rearrangements that drive diversification of this highly polymorphic gene family.


Asunto(s)
Variación Antigénica/genética , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Mitosis/genética , Parásitos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Recombinación Genética , Animales , Secuencia de Bases , Cromosomas/genética , Roturas del ADN de Doble Cadena , Humanos , Telómero/genética
4.
Proc Natl Acad Sci U S A ; 115(29): E6863-E6870, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967165

RESUMEN

We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) ß5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The ß5 inhibitors synergize with a ß2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA ß5 inhibitor surprisingly harbored a point mutation in the noncatalytic ß6 subunit. The ß6 mutant was resistant to the species-selective Pf20S ß5 inhibitor but remained sensitive to the species-nonselective ß5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S ß5 inhibitor was accompanied by increased sensitivity to a Pf20S ß2 inhibitor. Finally, the ß5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S ß5 and ß2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.


Asunto(s)
Antimaláricos/química , Plasmodium falciparum/enzimología , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química , Proteínas Protozoarias/antagonistas & inhibidores , Artemisininas/química , Bortezomib/química , Farmacorresistencia Microbiana , Humanos , Lactonas/química , Oligopéptidos/química , Proteínas Protozoarias/química
5.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33433953

RESUMEN

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Asunto(s)
Antimaláricos/farmacología , Desarrollo de Medicamentos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Malaria Falciparum/metabolismo , Ratones , Modelos Moleculares , Conformación Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Inhibidores de Proteasoma/síntesis química , Inhibidores de Proteasoma/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-32179524

RESUMEN

Malaria parasites invade and replicate within red blood cells (RBCs), extensively modifying their structure and gaining access to the extracellular environment by placing the plasmodial surface anion channel (PSAC) into the RBC membrane. Expression of members of the cytoadherence linked antigen gene 3 (clag3) family is required for PSAC activity, a process that is regulated epigenetically. PSAC is a well-established route of uptake for large, hydrophilic antimalarial compounds, and parasites can acquire resistance by silencing clag3 gene expression, thereby reducing drug uptake. We found that exposure to sub-IC50 concentrations of the histone methyltransferase inhibitor chaetocin caused substantial changes in both clag3 gene expression and RBC permeability, and reversed acquired resistance to the antimalarial compound blasticidin S that is transported through PSACs. Chaetocin treatment also altered progression of parasites through their replicative cycle, presumably by changing their ability to modify chromatin appropriately to enable DNA replication. These results indicate that targeting histone modifiers could represent a novel tool for reversing epigenetically acquired drug resistance in P. falciparum.


Asunto(s)
Malaria Falciparum , Parásitos , Preparaciones Farmacéuticas , Animales , Resistencia a Medicamentos/genética , Eritrocitos/metabolismo , Histona Metiltransferasas , Histonas/genética , Parásitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
7.
Clin Infect Dis ; 65(7): 1222-1225, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541469

RESUMEN

Babesiosis treatment failures with standard therapy have been reported, but the molecular mechanisms are not well understood. We describe the emergence of atovaquone and azithromycin resistance associated with mutations in the binding regions of the target proteins of both drugs during treatment of an immunosuppressed patient with relapsing babesiosis.


Asunto(s)
Antiprotozoarios/uso terapéutico , Atovacuona/uso terapéutico , Azitromicina/uso terapéutico , Babesiosis/tratamiento farmacológico , Resistencia a Medicamentos/efectos de los fármacos , Leucemia Linfocítica Crónica de Células B/parasitología , Rituximab/uso terapéutico , Anciano de 80 o más Años , Secuencia de Aminoácidos , Babesia microti/efectos de los fármacos , Humanos , Masculino
8.
J Clin Microbiol ; 55(10): 2903-2912, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28747374

RESUMEN

Babesia microti, a zoonotic intraerythrocytic parasite, is the primary etiological agent of human babesiosis in the United States. Human infections range from subclinical illness to severe disease resulting in death, with symptoms being related to host immune status. Despite advances in our understanding and management of B. microti, the incidence of infection in the United States has increased. Therefore, research focused on eradicating disease and optimizing clinical management is essential. Here we review this remarkable organism, with emphasis on the clinical, diagnostic, and therapeutic aspects of human disease.


Asunto(s)
Antiparasitarios/uso terapéutico , Babesia microti/inmunología , Babesiosis/diagnóstico , Babesiosis/tratamiento farmacológico , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/transmisión , Animales , Babesiosis/epidemiología , Babesiosis/transmisión , Hemólisis/fisiología , Humanos , Ixodes/parasitología , Ratones , Enfermedades por Picaduras de Garrapatas/diagnóstico , Enfermedades por Picaduras de Garrapatas/parasitología , Estados Unidos/epidemiología
9.
Nucleic Acids Res ; 42(1): 370-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24089143

RESUMEN

Malaria parasites replicate asexually within their mammalian hosts as haploid cells and are subject to DNA damage from the immune response and chemotherapeutic agents that can significantly disrupt genomic integrity. Examination of the annotated genome of the parasite Plasmodium falciparum identified genes encoding core proteins required for the homologous recombination (HR) pathway for repairing DNA double-strand breaks (DSBs), but surprisingly none of the components of the canonical non-homologous end joining (C-NHEJ) pathway were identified. To better understand how malaria parasites repair DSBs and maintain genome integrity, we modified the yeast I-SceI endonuclease system to generate inducible, site-specific DSBs within the parasite's genome. Analysis of repaired genomic DNA showed that parasites possess both a typical HR pathway resulting in gene conversion events as well as an end joining (EJ) pathway for repair of DSBs when no homologous sequence is available. The products of EJ were limited in number and identical products were observed in multiple independent experiments. The repair junctions frequently contained short insertions also found in the surrounding sequences, suggesting the possibility of a templated repair process. We propose that an alternative end-joining pathway rather than C-NHEJ, serves as a primary method for repairing DSBs in malaria parasites.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Plasmodium falciparum/genética , Reparación del ADN por Recombinación , Secuencia de Bases , Roturas del ADN de Doble Cadena , Conversión Génica , Genoma de Protozoos , Datos de Secuencia Molecular
10.
Mol Biol Evol ; 31(7): 1649-60, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24739308

RESUMEN

Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs.


Asunto(s)
Evolución Biológica , Resistencia a Medicamentos , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Plasmodium falciparum/fisiología , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Sustitución de Aminoácidos , Antimaláricos/farmacología , Epistasis Genética , Genes Protozoarios , Aptitud Genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Pirimetamina/farmacología , Transducción de Señal/efectos de los fármacos
11.
Mol Microbiol ; 88(4): 702-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23347134

RESUMEN

Resistance to antimalarials targeting the folate pathway is widespread. GTP-cyclohydrolase (gch1), the first enzyme in this pathway, exhibits extensive copy number variation (CN) in parasite isolates from areas with a history of longstanding antifolate use. Increased CN of gch1 is associated with a greater number of point mutations in enzymes targeted by the antifolates, pyrimethamine and sulphadoxine. While these observations suggest that increases in gch1 CN are an adaptation to drug pressure, changes in CN have not been experimentally demonstrated to directly alter drug susceptibility. To determine if changes in gch1 expression alone modify pyrimethamine sensitivity, we manipulated gch1 CN in several parasite lines to test the effect on drug sensitivity. We report that increases in gch1 CN alter pyrimethamine resistance in most parasites lines. However we find evidence of a detrimental effect of very high levels of gch1 overexpression in parasite lines with high endogenous levels of gch1 expression, revealing the importance of maintaining balance in the folate pathway and implicating changes in gch1 expression in preserving proper metabolic flux. This work expands our understanding of parasite adaptation to drug pressure and provides a possible mechanism for how specific mutations become fixed within parasite populations.


Asunto(s)
Adaptación Biológica , Antimaláricos/farmacología , Resistencia a Medicamentos , Antagonistas del Ácido Fólico/farmacología , Dosificación de Gen , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Genes Protozoarios , Pirimetamina/farmacología
12.
STAR Protoc ; 5(1): 102896, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38363687

RESUMEN

Artezomibs (ATZs), dual-pharmacophore molecules comprising of artemisinin and a parasite proteasome inhibitor, hijack parasite ubiquitin proteasome system to transform into new proteasome inhibitors following the activation of artemisinin by heme.1 Here, we present a protocol for using a fluorescent activity-based broad-spectrum proteasome inhibitor probe to study intracellular conversion of ATZ molecules into new proteasome inhibitors in malaria parasites. We describe steps for drug treatment and washout, parasite lysis, proteasome labeling, and visualization. For complete details on the use and execution of this protocol, please refer to Zhan et al.1.


Asunto(s)
Antimaláricos , Artemisininas , Parásitos , Animales , Plasmodium falciparum , Inhibidores de Proteasoma/farmacología , Complejo de la Endopetidasa Proteasomal , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico
13.
Nat Commun ; 14(1): 8302, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097652

RESUMEN

The proteasome of the malaria parasite Plasmodium falciparum (Pf20S) is an advantageous drug target because its inhibition kills P. falciparum in multiple stages of its life cycle and synergizes with artemisinins. We recently developed a macrocyclic peptide, TDI-8304, that is highly selective for Pf20S over human proteasomes and is potent in vitro and in vivo against P. falciparum. A mutation in the Pf20S ß6 subunit, A117D, confers resistance to TDI-8304, yet enhances both enzyme inhibition and anti-parasite activity of a tripeptide vinyl sulfone ß2 inhibitor, WLW-vs. Here we present the high-resolution cryo-EM structures of Pf20S with TDI-8304, of human constitutive proteasome with TDI-8304, and of Pf20Sß6A117D with WLW-vs that give insights into the species selectivity of TDI-8304, resistance to it, and the collateral sensitivity associated with resistance, including that TDI-8304 binds ß2 and ß5 in wild type Pf20S as well as WLW-vs binds ß2 and ß5 in Pf20Sß6A117D. We further show that TDI-8304 kills P. falciparum as quickly as chloroquine and artemisinin and is active against P. cynomolgi at the liver stage. This increases interest in using these structures to facilitate the development of Pf20S inhibitors that target multiple proteasome subunits and limit the emergence of resistance.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Sensibilidad Colateral al uso de Fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Antimaláricos/farmacología , Antimaláricos/química , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética
14.
J Med Chem ; 66(2): 1484-1508, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36630286

RESUMEN

With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.


Asunto(s)
Antimaláricos , Plasmodium , Humanos , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Relación Estructura-Actividad , Plasmodium falciparum/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química
15.
Cell Chem Biol ; 30(5): 457-469.e11, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37148884

RESUMEN

Artemisinins (ART) are critical anti-malarials and despite their use in combination therapy, ART-resistant Plasmodium falciparum is spreading globally. To counter ART resistance, we designed artezomibs (ATZs), molecules that link an ART with a proteasome inhibitor (PI) via a non-labile amide bond and hijack parasite's own ubiquitin-proteasome system to create novel anti-malarials in situ. Upon activation of the ART moiety, ATZs covalently attach to and damage multiple parasite proteins, marking them for proteasomal degradation. When damaged proteins enter the proteasome, their attached PIs inhibit protease function, potentiating the parasiticidal action of ART and overcoming ART resistance. Binding of the PI moiety to the proteasome active site is enhanced by distal interactions of the extended attached peptides, providing a mechanism to overcome PI resistance. ATZs have an extra mode of action beyond that of each component, thereby overcoming resistance to both components, while avoiding transient monotherapy seen when individual agents have disparate pharmacokinetic profiles.


Asunto(s)
Antimaláricos , Artemisininas , Parásitos , Plasmodium , Animales , Antimaláricos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Parásitos/metabolismo , Farmacóforo , Ubiquitina , Plasmodium/metabolismo , Artemisininas/farmacología , Resistencia a Medicamentos
16.
Cell Chem Biol ; 30(5): 470-485.e6, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36963402

RESUMEN

The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic ß2 and ß5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the ß5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Plasmodium , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Plasmodium/metabolismo , Artemisininas/química , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química
17.
J Med Chem ; 65(13): 9350-9375, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35727231

RESUMEN

With over 200 million cases and close to half a million deaths each year, malaria is a threat to global health, particularly in developing countries. Plasmodium falciparum, the parasite that causes the most severe form of the disease, has developed resistance to all antimalarial drugs. Resistance to the first-line antimalarial artemisinin and to artemisinin combination therapies is widespread in Southeast Asia and is emerging in sub-Saharan Africa. The P. falciparum proteasome is an attractive antimalarial target because its inhibition kills the parasite at multiple stages of its life cycle and restores artemisinin sensitivity in parasites that have become resistant through mutation in Kelch K13. Here, we detail our efforts to develop noncovalent, macrocyclic peptide malaria proteasome inhibitors, guided by structural analysis and pharmacokinetic properties, leading to a potent, species-selective, metabolically stable inhibitor.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Resistencia a Medicamentos , Humanos , Malaria Falciparum/tratamiento farmacológico , Péptidos/uso terapéutico , Plasmodium falciparum , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Proteínas Protozoarias/genética
18.
iScience ; 24(2): 102082, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33644714

RESUMEN

Malaria remains a major cause of morbidity and mortality in the developing world. Recent work has implicated chromosome end stability and the repair of DNA breaks through telomere healing as potent drivers of variant antigen diversification, thus associating basic mechanisms for maintaining genome integrity with aspects of host-parasite interactions. Here we applied long-read sequencing technology to precisely examine the dynamics of telomere addition and chromosome end stabilization in response to double-strand breaks within subtelomeric regions. We observed that the process of telomere healing induces the initial synthesis of telomere repeats well in excess of the minimal number required for end stability. However, once stabilized, these newly created telomeres appear to function normally, eventually returning to a length nearing that of intact chromosome ends. These results parallel recent observations in humans, suggesting an evolutionarily conserved mechanism for chromosome end repair.

19.
Trends Parasitol ; 36(6): 504-511, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32407681

RESUMEN

Experimental research into malaria biology and pathogenesis has historically focused on two model systems, in vitro culture of the human parasite Plasmodium falciparum and in vivo infections of laboratory animals using rodent parasites. While there is clear value in having a manipulatable animal model for studying malaria, there have occasionally been controversies around how representative the rodent model is of the human disease, and therefore significant emphasis has been placed on the similarities between the two biological systems. By focusing on basic nuclear functions, we wish to highlight that identifying key differences in the parasites and their interactions with their mammalian hosts can be equally informative and provide remarkable insights into the biology and evolution of these important infectious organisms.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Malaria/parasitología , Plasmodium/fisiología , Roedores/parasitología , Animales , Modelos Animales de Enfermedad , Humanos
20.
mBio ; 11(2)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184256

RESUMEN

The protozoan parasites that cause malaria infect a wide variety of vertebrate hosts, including birds, reptiles, and mammals, and the evolutionary pressures inherent to the host-parasite relationship have profoundly shaped the genomes of both host and parasite. Here, we report that these selective pressures have resulted in unexpected alterations to one of the most basic aspects of eukaryotic biology, the maintenance of genome integrity through DNA repair. Malaria parasites that infect humans continuously generate genetic diversity within their antigen-encoding gene families through frequent ectopic recombination between gene family members, a process that is a crucial feature of the persistence of malaria globally. The continuous generation of antigen diversity ensures that different parasite isolates are antigenically distinct, thus preventing extensive cross-reactive immunity and enabling parasites to maintain stable transmission within human populations. However, the molecular basis of the recombination between gene family members is not well understood. Through computational analyses of the antigen-encoding, multicopy gene families of different Plasmodium species, we report the unexpected observation that malaria parasites that infect rodents do not display the same degree of antigen diversity as observed in Plasmodium falciparum and appear to undergo significantly less ectopic recombination. Using comparative genomics, we also identify key molecular components of the diversification process, thus shedding new light on how malaria parasites balance the maintenance of genome integrity with the requirement for continuous genetic diversification.IMPORTANCE Malaria remains one of the most prevalent and deadly infectious diseases of the developing world, causing approximately 228 million clinical cases and nearly half a million deaths annually. The disease is caused by protozoan parasites of the genus Plasmodium, and of the five species capable of infecting humans, infections with P. falciparum are the most severe. In addition to the parasites that infect people, there are hundreds of additional species that infect birds, reptiles, and other mammals, each exquisitely evolved to meet the specific challenges inherent to survival within their respective hosts. By comparing the unique strategies that each species has evolved, key insights into host-parasite interactions can be gained, including discoveries regarding the pathogenesis of human disease. Here, we describe the surprising observation that closely related parasites with different hosts have evolved remarkably different methods for repairing their genomes. This observation has important implications for the ability of parasites to maintain chronic infections and for the development of host immunity.


Asunto(s)
Variación Antigénica/genética , Evolución Molecular , Genoma de Protozoos , Especificidad del Huésped/genética , Interacciones Huésped-Parásitos/genética , Plasmodium/genética , Animales , Reparación del ADN , Genómica , Humanos , Malaria/parasitología , Filogenia , Plasmodium/clasificación , Roedores/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA