Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Arch Toxicol ; 92(2): 803-822, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29038838

RESUMEN

Respiratory sensitization as a consequence of exposure to chemical products has increased over the last decades, leading to an increase of morbidity. The increased use of synthetic compounds resulted in an exponential growth of substances to which we are potentially exposed on a daily basis. Some of them are known to induce respiratory sensitization, meaning that they can trigger the development of allergies. In the past, animal studies provided useful results for the understanding of mechanisms involved in the development of respiratory allergies. However, the mechanistic understanding of the involved cellular effects is still limited. Currently, no in vitro or in vivo models are validated to identify chemical respiratory sensitizers. Nonetheless, chemical respiratory sensitizers elicit a positive response in validated assays for skin sensitization. In this review, we will discuss how these assays could be used for respiratory sensitization and if necessary, what can be learnt from these assays to develop a model to assess the respiratory sensitizing potential of chemicals. In the last decades, much work has been done to study the respiratory toxicity of inhaled compounds especially in developing in vitro assays grown at the air-liquid interface. We will discuss how possibly the tests currently used to investigate general particle toxicity could be transformed to investigate respiratory sensitization. In the present review, we describe the most known mechanism involved in the sensitization process and the experimental in vivo and alternative in vitro models, which are currently available and how to adapt and improve existing models to study respiratory sensitization.


Asunto(s)
Hipersensibilidad Respiratoria/inducido químicamente , Pruebas de Toxicidad/métodos , Animales , Bioensayo , Células Cultivadas , Cobayas , Humanos , Sistema Inmunológico , Exposición por Inhalación , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pruebas Cutáneas
2.
Part Fibre Toxicol ; 14(1): 7, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28264691

RESUMEN

BACKGROUND: During the last 250 years, the level of exposure to combustion-derived particles raised dramatically in western countries, leading to increased particle loads in the ambient air. Among the environmental particles, diesel exhaust particulate matter (DEPM) plays a special role because of its omnipresence and reported effects on human health. During recent years, a possible link between air pollution and the progression of atherosclerosis is recognized. A central effect of DEPM is their impact on the endothelium, especially of the alveolar barrier. In the present study, a complex 3D tetraculture model of the alveolar barrier was used in a dose-controlled exposure scenario with realistic doses of DEPM to study the response of endothelial cells. RESULTS: Tetracultures were exposed to different doses of DEPM (SRM2975) at the air-liquid-interface. DEPM exposure did not lead to the mRNA expression of relevant markers for endothelial inflammation such as ICAM-1 or E-selectin. In addition, we observed neither a significant change in the expression levels of the genes relevant for antioxidant defense, such as HMOX1 or SOD1, nor the release of pro-inflammatory second messengers, such as IL-6 or IL-8. However, DEPM exposure led to strong nuclear translocation of the transcription factor Nrf2 and significantly altered expression of CYP1A1 mRNA in the endothelial cells of the tetraculture. CONCLUSION: In the present study, we demonstrated the use of a complex 3D tetraculture system together with a state-of-the-art aerosol exposure equipment to study the effects of in vivo relevant doses of DEPM on endothelial cells in vitro. To the best of our knowledge, this study is the first that focuses on indirect effects of DEPM on endothelial cells of the alveolar barrier in vitro. Exposure to DEPM led to significant activation and nuclear translocation of the transcription factor Nrf2 in endothelial cells. The considerably low doses of DEPM had a low but measurable effect, which is in line with recent data from in vivo studies.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Células Epiteliales Alveolares/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Células A549 , Células Epiteliales Alveolares/metabolismo , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos
3.
Part Fibre Toxicol ; 10: 31, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23890538

RESUMEN

BACKGROUND: Exposure to fine and ultra-fine ambient particles is still a problem of concern in many industrialised parts of the world and the intensified use of nanotechnology may further increase exposure to small particles. Complex in vitro coculture systems may be valuable tools to study particle-induced processes and to extrapolate effects of particles on the lung. A system consisting of four different human cell lines which mimics the cell response of the alveolar surface in vitro was developed to study native aerosol exposure (Vitrocell™ chamber). The system is composed of an alveolar type-II cell line (A549), differentiated macrophage-like cells (THP-1), mast cells (HMC-1) and endothelial cells (EA.hy 926), seeded in a 3D-orientation on a microporous membrane. RESULTS: The spatial distribution of the cells in the tetraculture was analysed by confocal laser scanning microscopy (CLSM), showing a confluent layer of endothelial and epithelial cells on both sides of the transwell. Macrophage-like cells and mast cells can be found on top of the epithelial cells. The cells formed colonies under submerged conditions, which disappeared at the ALI. To evaluate the response to oxidative stress, the dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used together with 2,2'-azobis-2-methyl-propanimidamide-dihydrochloride (AAPH) as inducer of oxidative stress. The tetraculture showed less induction of reactive oxygen species (ROS) production after being treated with a positive control compared to the monocultures of EA.hy 926, THP-1 and HMC-1. Submerged cultures showed elevated ROS and IL-8 levels compared to ALI cultures. The Vitrocell™ aerosol exposure system was not significantly influencing the viability. Using this system, cells were exposed to an aerosol of 50 nm SiO2-Rhodamine NPs in PBS. The distribution of the NPs in the tetraculture after exposure was evaluated by CLSM. Fluorescence from internalized particles was detected in CD11b-positive THP-1 cells only. CONCLUSION: The system can be used in conjunction with a native aerosol exposure system and may finally lead to a more realistic judgement regarding the hazard of new compounds and/or new nano-scaled materials in the future. The results for the ROS production and IL-8 secretion suggest that submerged exposure may lead to an overestimation of observed effects.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Macrófagos/efectos de los fármacos , Mastocitos/efectos de los fármacos , Material Particulado/toxicidad , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/efectos de los fármacos , Dióxido de Silicio/toxicidad , Aerosoles , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Exposición por Inhalación , Interleucina-8/metabolismo , Macrófagos/metabolismo , Mastocitos/metabolismo , Nanopartículas , Estrés Oxidativo/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Medición de Riesgo
4.
Toxicol In Vitro ; 29(1): 234-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25448809

RESUMEN

We developed a coculture model of the lung­blood barrier using human bronchial epithelial cells(16HBE14o-), monocytes (THP-1) and human lung microvascular endothelial cells (HLMVEC) in which several parameters can be assessed simultaneously. The epithelial and endothelial cells were grown on opposite sides of a microporous membrane. Electron and confocal microscopic pictures show the presence of the cells in their appropriate compartment and both cell types do not show evidence of growing through the pores. Out of three endothelial cell types (EAhy.926, HUVEC and HLMVEC), the last was chosen as the most appropriate cell type, best resembling the pulmonary endothelium and allowing the expression of functional tight junctions in the 16HBE14o- monolayer with sufficiently high transepithelial electrical resistance (TEER) values. Finally, monocytes were added to the apical compartment. PMA-activated macrophages significantly affected barrier integrity (73% TEER reduction compared to control after 24 h) and disrupted the epithelial tight junctions as shown by redistribution of ZO-1 labeling. Alternatively, monocytes could be activated using lipopolysaccharide, at a sub-toxic level int he apical compartment and only induced a small, though significant, reduction in TEER.This coculture system is a representative model of the lung­blood barrier with barrier integrity as the main toxicity endpoint.


Asunto(s)
Bronquios/fisiología , Técnicas de Cocultivo/métodos , Microvasos/fisiología , Fagocitos/fisiología , Mucosa Respiratoria/fisiología , Bronquios/citología , Impedancia Eléctrica , Humanos , Microscopía Confocal , Microscopía Electrónica , Microvasos/citología , Mucosa Respiratoria/citología
5.
Environ Toxicol Chem ; 33(4): 804-13, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24375866

RESUMEN

Across different species, cellular efflux pumps such as P-glycoprotein (P-gp; also termed multidrug resistance protein 1 [MDR1]) serve as a first line of defense by transporting toxic xenobiotics out of the cell. This mechanism is also active in aquatic organisms such as mussels, fish, and their larvae. Modulation of this resistance mechanism by chemical agents occurring in the environment could result in either higher or lower internal concentrations of toxic or endogenous compounds in cells. The aim of the present study was to explore and quantify the inhibition of the P-gp efflux pumps by several ubiquitous aquatic contaminants. The calcein-acetoxymethyl ester (calcein-AM) assay commonly used in pharmacological research was established with P-gp-overexpressing Madin-Darby canine kidney cells (MDCKII-MDR1) in a 96-well plate, avoiding extra washing, centrifugation, and lysis steps. This calcein-AM-based P-gp cellular efflux pump inhibition assay (CEPIA) was used to study the inhibition by commonly occurring environmental contaminants. Among others, the compounds pentachlorophenol, perfluorooctane sulfonate, and perfluorooctanoate strongly inhibited the P-gp-mediated efflux of calcein-AM while the chloninated alkanes did not seem to interact with the transporter. The fact that common pollutants can be potent modulators of the efflux transporters is a motive to further study whether this increases the toxicity of other contaminants present in the same matrices.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Contaminantes Ambientales/toxicidad , Fluoresceínas/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Bioensayo , Perros , Humanos , Células de Riñón Canino Madin Darby , Transfección
6.
Toxicol In Vitro ; 25(8): 1516-34, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21963807

RESUMEN

Exposure to particulate matter (PM) like nanoparticles (NPs) has increased in the last century due to increased combustion processes, road traffic, etc. In addition, the progress in chemical and cosmetic industry led to many new compounds, e.g. fragrances, which humans are exposed to every day. Many chemicals are known to act as contact and some as respiratory sensitizers, causing allergic reactions. Exposure to small particles of less than 100 nm in diameter is linked with an increased risk of respiratory diseases, such as asthma or rhinitis. To date already more than 1000 customer products contain eNPs without knowing much about the health effects. In comparison to chemicals, the mechanisms by which PM and eNPs can cause sensitization are still not fully understood. Validated and regulatory accepted in vitro models to assess this hazard in its full range are still missing. While a huge number of animal studies contributed to our knowledge about sensitization processes, knowledge on involved cellular mechanisms is still limited. In this review relevant in vitro models to study and elucidate these mechanisms in more detail are presented and their potential to serve as part of a tiered testing strategy is discussed.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Técnicas de Cocultivo , Material Particulado/toxicidad , Neumonía/inducido químicamente , Hipersensibilidad Respiratoria/inducido químicamente , Animales , Línea Celular , Humanos , Pulmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA