Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 182(3): 685-712.e19, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32645325

RESUMEN

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Neumonía Viral/metabolismo , Proteómica/métodos , Células A549 , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , COVID-19 , Células CACO-2 , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Fosforilación , Neumonía Viral/virología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Tirosina Quinasa del Receptor Axl
2.
Nature ; 617(7961): 616-622, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36972684

RESUMEN

Steroid hormone receptors are ligand-binding transcription factors essential for mammalian physiology. The androgen receptor (AR) binds androgens mediating gene expression for sexual, somatic and behavioural functions, and is involved in various conditions including androgen insensitivity syndrome and prostate cancer1. Here we identified functional mutations in the formin and actin nucleator DAAM2 in patients with androgen insensitivity syndrome. DAAM2 was enriched in the nucleus, where its localization correlated with that of the AR to form actin-dependent transcriptional droplets in response to dihydrotestosterone. DAAM2 AR droplets ranged from 0.02 to 0.06 µm3 in size and associated with active RNA polymerase II. DAAM2 polymerized actin directly at the AR to promote droplet coalescence in a highly dynamic manner, and nuclear actin polymerization is required for prostate-specific antigen expression in cancer cells. Our data uncover signal-regulated nuclear actin assembly at a steroid hormone receptor necessary for transcription.


Asunto(s)
Actinas , Forminas , Proteínas Nucleares , Receptores Androgénicos , Transcripción Genética , Humanos , Actinas/metabolismo , Síndrome de Resistencia Androgénica/genética , Síndrome de Resistencia Androgénica/metabolismo , Andrógenos/farmacología , Andrógenos/metabolismo , Forminas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Nucleares/metabolismo , Polimerizacion/efectos de los fármacos , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal/efectos de los fármacos , Esteroides/metabolismo , Esteroides/farmacología , Testosterona/análogos & derivados , Transcripción Genética/efectos de los fármacos
3.
FASEB J ; 35(7): e21647, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34165206

RESUMEN

The Cytotoxic Necrotizing Factor Y (CNFY) is produced by the gram-negative, enteric pathogen Yersinia pseudotuberculosis. The bacterial toxin belongs to a family of deamidases, which constitutively activate Rho GTPases, thereby balancing inflammatory processes. We identified heparan sulfate proteoglycans as essential host cell factors for intoxication with CNFY. Using flow cytometry, microscopy, knockout cell lines, pulsed electron-electron double resonance, and bio-layer interferometry, we studied the role of glucosaminoglycans in the intoxication process of CNFY. Especially the C-terminal part of CNFY, which encompasses the catalytic activity, binds with high affinity to heparan sulfates. CNFY binding with the N-terminal domain to a hypothetical protein receptor may support the interaction between the C-terminal domain and heparan sulfates, which seems sterically hindered in the full toxin. A second conformational change occurs by acidification of the endosome, probably allowing insertion of the hydrophobic regions of the toxin into the endosomal membrane. Our findings suggest that heparan sulfates play a major role for intoxication within the endosome, rather than being relevant for an interaction at the cell surface.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Linfocitos/metabolismo , Proteínas Recombinantes/metabolismo , Yersinia pseudotuberculosis/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Conformación Proteica , Proteínas Recombinantes/genética
4.
EMBO Rep ; 21(11): e50758, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32959960

RESUMEN

The actin cytoskeleton operates in a multitude of cellular processes including cell shape and migration, mechanoregulation, and membrane or organelle dynamics. However, its filamentous properties and functions inside the mammalian cell nucleus are less well explored. We previously described transient actin assembly at mitotic exit that promotes nuclear expansion during chromatin decondensation. Here, we identify non-muscle α-actinin 4 (ACTN4) as a critical regulator to facilitate F-actin reorganization and bundling during postmitotic nuclear expansion. ACTN4 binds to nuclear actin filament structures, and ACTN4 clusters associate with nuclear F-actin in a highly dynamic fashion. ACTN4 but not ACTN1 is required for proper postmitotic nuclear volume expansion, mediated by its actin-binding domain. Using super-resolution imaging to quantify actin filament numbers and widths in individual nuclei, we find that ACTN4 is necessary for postmitotic nuclear actin reorganization and actin filament bundling. Our findings uncover a nuclear cytoskeletal function for ACTN4 to control nuclear size and chromatin organization during mitotic cell division.


Asunto(s)
Actinina , Actinas , Citoesqueleto de Actina , Actinina/genética , Actinas/genética , Animales , Núcleo Celular , Citoesqueleto
5.
Nat Commun ; 14(1): 323, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658193

RESUMEN

In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.


Asunto(s)
Proteínas Portadoras , Fosfoproteínas , Proteínas Portadoras/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Simbiosis
6.
Cell Rep ; 41(3): 111524, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36260995

RESUMEN

The metabolic enzyme branched-chain amino acid transaminase 1 (BCAT1) drives cell proliferation in aggressive cancers such as glioblastoma. Here, we show that BCAT1 localizes to mitotic structures and has a non-metabolic function as a mitotic regulator. Furthermore, BCAT1 is required for chromosome segregation in cancer and induced pluripotent stem cells and tumor growth in human cerebral organoid and mouse syngraft models. Applying gene knockout and rescue strategies, we show that the BCAT1 CXXC redox motif is crucial for controlling cysteine sulfenylation specifically in mitotic cells, promoting Aurora kinase B localization to centromeres, and securing accurate chromosome segregation. These findings offer an explanation for the well-established role of BCAT1 in promoting cancer cell proliferation. In summary, our data establish BCAT1 as a component of the mitotic apparatus that safeguards mitotic fidelity through a moonlighting redox functionality.


Asunto(s)
Aminoácidos de Cadena Ramificada , Cisteína , Animales , Humanos , Ratones , Aurora Quinasa B , Modelos Animales de Enfermedad , Oxidación-Reducción , Transaminasas
7.
Curr Biol ; 31(12): 2712-2719.e5, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33930305

RESUMEN

Legumes have maintained the ability to associate with rhizobia to sustain the nitrogen-fixing root nodule symbiosis (RNS). In Medicago truncatula, the Nod factor (NF)-dependent intracellular root colonization by Sinorhizobium meliloti initiates from young, growing root hairs. They form rhizobial traps by physically curling around the symbiont.1,2 Although alterations in root hair morphology like branching and swelling have been observed in other plants in response to drug treatments3 or genetic perturbations,4-6 full root hair curling represents a rather specific invention in legumes. The entrapment of the symbiont completes with its full enclosure in a structure called the "infection chamber" (IC),1,2,7,8 from which a tube-like membrane channel, the "infection thread" (IT), initiates.1,2,9 All steps of rhizobium-induced root hair alterations are aided by a tip-localized cytosolic calcium gradient,10,11 global actin re-arrangements, and dense subapical fine actin bundles that are required for the delivery of Golgi-derived vesicles to the root hair tip.7,12-14 Altered actin dynamics during early responses to NFs or rhizobia have mostly been shown in mutants that are affected in the actin-related SCAR/WAVE complex.15-18 Here, we identified a polarly localized SYMBIOTIC FORMIN 1 (SYFO1) to be required for NF-dependent alterations in membrane organization and symbiotic root hair responses. We demonstrate that SYFO1 mediates a continuum between the plasma membrane and the cell wall that is required for the onset of rhizobial infections.


Asunto(s)
Medicago truncatula , Rhizobium , Actinas , Membrana Celular , Pared Celular , Forminas , Medicago truncatula/genética , Microtúbulos , Proteínas de Plantas/genética , Raíces de Plantas , Simbiosis
8.
iScience ; 15: 274-281, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31096079

RESUMEN

Cytoskeletal cross talk between actin filaments and microtubules is a common mechanism governing the assembly of cellular structures, i.e., during filopodia formation or cilia organization. However, potential actin-microtubule interactions during mammalian cell divisions are less well understood. At mitotic entry, centrosomes propagate the formation of the mitotic spindle, thereby aligning individual chromosomes to the metaphase plate, a process coined chromosome congression. Here, we identify actin filament assembly spatially defined at centrosomes contemporaneously with spindle microtubules forming during prometaphase. We show that pharmacological Arp2/3 complex inhibition as well as overexpression of the Arp2/3 complex inhibitory protein Arpin decreased spindle actin. As a consequence, mitotic spindle formation is impaired, which resulted in disorganized chromosome congression and ultimately mitotic defects in non-transformed cells. Thus centrosomal Arp2/3 complex activity plays a role in the maintenance of genomic integrity during mitosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA