Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 505: 42-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37827362

RESUMEN

BAZ1B is one of 25-27 coding genes deleted in canonical Williams syndrome, a multi-system disorder causing slow growth, vascular stenosis, and gastrointestinal complaints, including constipation. BAZ1B is involved in (among other processes) chromatin organization, DNA damage repair, and mitosis, suggesting reduced BAZ1B may contribute to Williams syndrome symptoms. In mice, loss of Baz1b causes early neonatal death. 89.6% of Baz1b-/- mice die within 24 h of birth without vascular anomalies or congenital heart disease (except for patent ductus arteriosus). Some (<50%) Baz1b-/- were noted to have prolonged neonatal cyanosis, patent ductus arteriosus, or reduced lung aeration, and none developed a milk spot. Meanwhile, 35.5% of Baz1b+/- mice die over the first three weeks after birth. Surviving Baz1b heterozygotes grow slowly (with variable severity). 66.7% of Baz1b+/- mice develop bowel dilation, compared to 37.8% of wild-type mice, but small bowel and colon transit studies were normal. Additionally, enteric neuron density appeared normal in Baz1b-/- mice except in distal colon myenteric plexus, where neuron density was modestly elevated. Combined with several rare phenotypes (agnathia, microphthalmia, bowel dilation) recovered, our work confirms the importance of BAZ1B in survival and growth and suggests that reduced copy number of BAZ1B may contribute to the variability in Williams syndrome phenotypes.


Asunto(s)
Conducto Arterioso Permeable , Síndrome de Williams , Animales , Ratones , Colon , Reparación del ADN , Neuronas , Síndrome de Williams/genética
2.
Dev Dyn ; 253(2): 233-254, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688792

RESUMEN

BACKGROUND: Latent TGFß binding protein-2 (LTBP2) is a fibrillin 1 binding component of the microfibril. LTBP2 is the only LTBP protein that does not bind any isoforms of TGFß, although it may interfere with the function of other LTBPs or interact with other signaling pathways. RESULTS: Here, we investigate mice lacking Ltbp2 (Ltbp2-/- ) and identify multiple phenotypes that impact bodyweight and fat mass, and affect bone and skin development. The alterations in skin and bone development are particularly noteworthy since the strength of these tissues is differentially affected by loss of Ltbp2. Interestingly, some tissues that express high levels of Ltbp2, such as the aorta and lung, do not have a developmental or homeostatic phenotype. CONCLUSIONS: Analysis of these mice show that LTBP2 has complex effects on development through direct effects on the extracellular matrix (ECM) or on signaling pathways that are known to regulate the ECM.


Asunto(s)
Proteínas Portadoras , Matriz Extracelular , Animales , Ratones , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Matriz Extracelular/metabolismo , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo , Isoformas de Proteínas/metabolismo , Unión Proteica
3.
FASEB J ; 36 Suppl 12022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35723872

RESUMEN

BAZ1B is one of several genes deleted in Williams-Beuren Syndrome (WBS), a complex, multisystem genetic condition that occurs in ~1 in 8000 live births. Also known as Williams Syndrome Transcription Factor (WSTF), BAZ1B is thought to be essential for neural crest migration. To evaluate the impact of Baz1b loss of function, we evaluated the "knockout first" allele of Baz1btm2a(KOMP)Wtsi . Quantitative PCR revealed markedly reduced, but not absent, expression of Baz1b, suggesting that Baz1btm2a(KOMP)Wtsi mutants are knockdowns rather than knockouts. Homozygous Baz1btm2a(KOMP)Wtsi mutant mice die just hours after birth, and both homozygous mutants and heterozygotes are smaller than age-matched wildtype littermates. Survival analyses conducted on 388 Baz1btm2a(KOMP)Wtsi mice revealed that heterozygotes and homozygous mutants are approximately three and sixteen times more likely to die than wildtype mice, respectively [hazard ratio for death in Baz1b+/- : 3.04 (95% CI, 1.83-5.06), p<0.0001; hazard ratio for death in Baz1b-/- : 15.83 (95% CI, 8.54-29.37); p<0.0001]. Furthermore, a linear mixed effects model for the weights of wildtype and heterozygous mice over a 29-day period showed a significant difference in size based on genotype (mean: WT 7.97 g, Baz1b+/- 6.56 g, p<0.0001). Because neural crest lineages contribute to cardiac development, structure, and function, we hypothesized that early sudden death and failure to thrive in mutant mice may be at least partially attributable to cardiac abnormalities. To evaluate any morphologic and functional abnormalities, we performed microCT and echocardiography. MicroCT analysis of the hearts from P0 pups did not reveal congenital heart disease typical of neural crest defects (e.g. tetralogy of Fallot, truncus arteriosus, double outlet right ventricle, or interrupted aortic arch). Echocardiograms, performed at 1-month to align with the growth analysis timeline, revealed mildly decreased ejection fraction (EF, median: WT 64%, Baz1b+/- 56%, p<0.01) and fractional shortening (FS, median: WT 34%, Baz1b+/- 29%, p<0.01), increased left ventricular internal dimension at diastole (LViDd) normalized to animal size (median: WT 0.22 mm/g, Baz1b+/- 0.27 mm/g, p<0.05), and unchanged left ventricular posterior wall dimension at diastole (LVPWd) normalized to body size (median: WT 0.041 mm/g, Baz1b+/- 0.048 mm/g, p=0.19) in Baz1b+/- when compared to wildtype. However, Baz1b+/- LVPWd is significantly smaller than WT when body size is not considered (median: WT 0.63 mm, Baz1b+/- 0.62 mm, p<0.01), suggesting a relationship between cardiac function and mutant animal growth (all tests for genotype in n=14 WT and n=14 Baz1b+/- by Mann-Whitney U Test). Taken together, our data suggest that Baz1b+/- mice exhibit a dilated cardiomyopathy and that dosage for this gene may contribute to early death, decreased somatic growth, and cardiac abnormalities in Baz1b mutant mice. Additional analyses in older mice and with mutants generated using the conditional Baz1btm2a(KOMP)Wtsi allele will allow us to better explore the mechanisms of both the growth failure and cardiomyopathy phenotypes in this model.


Asunto(s)
Cardiomiopatía Dilatada , Cardiopatías Congénitas , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Corazón , Cardiopatías Congénitas/genética , Ratones , Cresta Neural/metabolismo , Fenotipo
4.
Hum Mol Genet ; 29(12): 2035-2050, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32412588

RESUMEN

Supravalvular aortic stenosis (SVAS) is a narrowing of the aorta caused by elastin (ELN) haploinsufficiency. SVAS severity varies among patients with Williams-Beuren syndrome (WBS), a rare disorder that removes one copy of ELN and 25-27 other genes. Twenty percent of children with WBS require one or more invasive and often risky procedures to correct the defect while 30% have no appreciable stenosis, despite sharing the same basic genetic lesion. There is no known medical therapy. Consequently, identifying genes that modify SVAS offers the potential for novel modifier-based therapeutics. To improve statistical power in our rare-disease cohort (N = 104 exomes), we utilized extreme-phenotype cohorting, functional variant filtration and pathway-based analysis. Gene set enrichment analysis of exome-wide association data identified increased adaptive immune system variant burden among genes associated with SVAS severity. Additional enrichment, using only potentially pathogenic variants known to differ in frequency between the extreme phenotype subsets, identified significant association of SVAS severity with not only immune pathway genes, but also genes involved with the extracellular matrix, G protein-coupled receptor signaling and lipid metabolism using both SKAT-O and RQTest. Complementary studies in Eln+/-; Rag1-/- mice, which lack a functional adaptive immune system, showed improvement in cardiovascular features of ELN insufficiency. Similarly, studies in mixed background Eln+/- mice confirmed that variations in genes that increase elastic fiber deposition also had positive impact on aortic caliber. By using tools to improve statistical power in combination with orthogonal analyses in mice, we detected four main pathways that contribute to SVAS risk.


Asunto(s)
Estenosis Aórtica Supravalvular/genética , Elastina/genética , Proteínas de Homeodominio/genética , Síndrome de Williams/genética , Adolescente , Animales , Estenosis Aórtica Supravalvular/fisiopatología , Preescolar , Constricción Patológica/genética , Constricción Patológica/fisiopatología , Modelos Animales de Enfermedad , Haploinsuficiencia/genética , Humanos , Masculino , Ratones , Factores de Riesgo , Secuenciación del Exoma , Síndrome de Williams/fisiopatología
5.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743192

RESUMEN

Lysyl oxidase (LOX) is a copper-binding enzyme that cross-links elastin and collagen. The dominant LOX variation contributes to familial thoracic aortic aneurysm. Previously reported murine Lox mutants had a mild phenotype and did not dilate without drug-induced provocation. Here, we present a new, more severe mutant, Loxb2b370.2Clo (c.G854T; p.Cys285Phe), whose mutation falls just N-terminal to the copper-binding domain. Unlike the other mutants, the C285F Lox protein was stably produced/secreted, and male C57Bl/6J Lox+/C285F mice exhibit increased systolic blood pressure (BP; p < 0.05) and reduced caliber aortas (p < 0.01 at 100mmHg) at 3 months that independently dilate by 6 months (p < 0.0001). Multimodal imaging reveals markedly irregular elastic sheets in the mutant (p = 2.8 × 10−8 for breaks by histology) that become increasingly disrupted with age (p < 0.05) and breeding into a high BP background (p = 6.8 × 10−4). Aortic dilation was amplified in males vs. females (p < 0.0001 at 100mmHg) and ameliorated by castration. The transcriptome of young Lox mutants showed alteration in dexamethasone (p = 9.83 × 10−30) and TGFß-responsive genes (p = 7.42 × 10−29), and aortas from older C57Bl/6J Lox+/C285F mice showed both enhanced susceptibility to elastase (p < 0.01 by ANOVA) and increased deposition of aggrecan (p < 0.05). These findings suggest that the secreted Lox+/C285F mutants produce dysfunctional elastic fibers that show increased susceptibility to proteolytic damage. Over time, the progressive weakening of the connective tissue, modified by sex and blood pressure, leads to worsening aortic disease.


Asunto(s)
Tejido Elástico , Proteína-Lisina 6-Oxidasa , Animales , Aorta/metabolismo , Presión Sanguínea , Cobre , Dilatación Patológica/patología , Tejido Elástico/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 315(1): H18-H32, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29498532

RESUMEN

Increased vascular stiffness correlates with a higher risk of cardiovascular complications in aging adults. Elastin (ELN) insufficiency, as observed in patients with Williams-Beuren syndrome or with familial supravalvular aortic stenosis, also increases vascular stiffness and leads to arterial narrowing. We used Eln+/- mice to test the hypothesis that pathologically increased vascular stiffness with concomitant arterial narrowing leads to decreased blood flow to end organs such as the brain. We also hypothesized that drugs that remodel arteries and increase lumen diameter would improve flow. To test these hypotheses, we compared carotid blood flow using ultrasound and cerebral blood flow using MRI-based arterial spin labeling in wild-type (WT) and Eln+/- mice. We then studied how minoxidil, an ATP-sensitive K+ channel opener and vasodilator, affects vessel mechanics, blood flow, and gene expression. Both carotid and cerebral blood flows were lower in Eln+/- mice than in WT mice. Treatment of Eln+/- mice with minoxidil lowered blood pressure and reduced functional arterial stiffness to WT levels. Minoxidil also improved arterial diameter and restored carotid and cerebral blood flows in Eln+/- mice. The beneficial effects persisted for weeks after drug removal. RNA-Seq analysis revealed differential expression of 127 extracellular matrix-related genes among the treatment groups. These results indicate that ELN insufficiency impairs end-organ perfusion, which may contribute to the increased cardiovascular risk. Minoxidil, despite lowering blood pressure, improves end-organ perfusion. Changes in matrix gene expression and persistence of treatment effects after drug withdrawal suggest arterial remodeling. Such remodeling may benefit patients with genetic or age-dependent ELN insufficiency. NEW & NOTEWORTHY Our work with a model of chronic vascular stiffness, the elastin ( Eln)+/- mouse, shows reduced brain perfusion as measured by carotid ultrasound and MRI arterial spin labeling. Vessel caliber, functional stiffness, and blood flow improved with minoxidil. The ATP-sensitive K+ channel opener increased Eln gene expression and altered 126 other matrix-associated genes.


Asunto(s)
Circulación Cerebrovascular/efectos de los fármacos , Matriz Extracelular/metabolismo , Minoxidil/farmacología , Rigidez Vascular/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/metabolismo , Arterias Cerebrales/fisiología , Elastina/genética , Elastina/metabolismo , Matriz Extracelular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
7.
Am J Physiol Renal Physiol ; 311(1): F120-30, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27147675

RESUMEN

Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout (Alb(-/-)) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb(+/-) mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout (Col4a3(-/-)) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3(-/-);Alb(-/-) mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3(-/-);Alb(+/+) and Col4a3(-/-);Alb(+/-) mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-ß1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy.


Asunto(s)
Albúminas/metabolismo , Enfermedades Renales/metabolismo , Nefritis Hereditaria/metabolismo , Albúminas/deficiencia , Albúminas/genética , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Presión Sanguínea , Colágeno Tipo IV/biosíntesis , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Progresión de la Enfermedad , Riñón/patología , Enfermedades Renales/etiología , Enfermedades Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis Hereditaria/complicaciones , Nefritis Hereditaria/patología , Análisis de Supervivencia , Factor de Crecimiento Transformador beta1/biosíntesis , Triglicéridos/sangre
8.
Am J Physiol Heart Circ Physiol ; 309(5): H1008-16, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26232234

RESUMEN

Increased arterial stiffness is a common characteristic of humans with Williams-Beuren syndrome and mouse models of elastin insufficiency. Arterial stiffness is associated with multiple negative cardiovascular outcomes, including myocardial infarction, stroke, and sudden death. Therefore, identifying therapeutic interventions that improve arterial stiffness in response to changes in elastin levels is of vital importance. The goal of this study was to determine the effect of chronic pharmacologic therapy with different classes of antihypertensive medications on arterial stiffness in elastin insufficiency. Elastin-insufficient mice 4-6 wk of age and wild-type littermates were subcutaneously implanted with osmotic micropumps delivering a continuous dose of one of the following: vehicle, losartan, nicardipine, or propranolol for 8 wk. At the end of treatment period, arterial blood pressure and large artery compliance and remodeling were assessed. Our results show that losartan and nicardipine treatment lowered blood pressure and pulse pressure in elastin-insufficient mice. Elastin and collagen content of abdominal aortas as well as ascending aorta and carotid artery biomechanics were not affected by any of the drug treatments in either genotype. By reducing pulse pressure and shifting the working pressure range of an artery to a more compliant region of the pressure-diameter curve, antihypertensive medications may mitigate the consequences of arterial stiffness, an effect that is drug class independent. These data emphasize the importance of early recognition and long-term management of hypertension in Williams-Beuren syndrome and elastin insufficiency.


Asunto(s)
Antihipertensivos/uso terapéutico , Arterias/efectos de los fármacos , Presión Sanguínea , Rigidez Vascular/efectos de los fármacos , Síndrome de Williams/tratamiento farmacológico , Animales , Arterias/fisiopatología , Elastina/deficiencia , Elastina/genética , Losartán/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Nicardipino/uso terapéutico , Propranolol/uso terapéutico , Rigidez Vascular/genética , Síndrome de Williams/fisiopatología
9.
J Biol Chem ; 288(40): 28869-80, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23963447

RESUMEN

Microfibril-associated glycoprotein (MAGP) 1 and 2 are evolutionarily related but structurally divergent proteins that are components of microfibrils of the extracellular matrix. Using mice with a targeted inactivation of Mfap5, the gene for MAGP2 protein, we demonstrate that MAGPs have shared as well as unique functions in vivo. Mfap5(-/-) mice appear grossly normal, are fertile, and have no reduction in life span. Cardiopulmonary development is typical. The animals are normotensive and have vascular compliance comparable with age-matched wild-type mice, which is indicative of normal, functional elastic fibers. Loss of MAGP2 alone does not significantly alter bone mass or architecture, and loss of MAGP2 in tandem with loss of MAGP1 does not exacerbate MAGP1-dependent osteopenia. MAGP2-deficient mice are neutropenic, which contrasts with monocytopenia described in MAGP1-deficient animals. This suggests that MAGP1 and MAGP2 have discrete functions in hematopoiesis. In the cardiovascular system, MAGP1;MAGP2 double knockout mice (Mfap2(-/-);Mfap5(-/-)) show age-dependent aortic dilation. These findings indicate that MAGPs have shared primary functions in maintaining large vessel integrity. In solid phase binding assays, MAGP2 binds active TGFß1, TGFß2, and BMP2. Together, these data demonstrate that loss of MAGP2 expression in vivo has pleiotropic effects potentially related to the ability of MAGP2 to regulate growth factors or participate in cell signaling.


Asunto(s)
Proteínas Contráctiles/deficiencia , Proteínas Contráctiles/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/metabolismo , Pleiotropía Genética , Alelos , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Densidad Ósea , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/patología , Huesos/fisiopatología , Movimiento Celular , Proteínas Contráctiles/química , Exones/genética , Proteínas de la Matriz Extracelular/química , Marcación de Gen , Recuento de Leucocitos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neutropenia/metabolismo , Neutropenia/patología , Neutrófilos/metabolismo , Neutrófilos/patología , Tamaño de los Órganos , Unión Proteica , Factores de Empalme de ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 306(5): H654-66, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24414067

RESUMEN

Elastin (Eln) insufficiency in mice and humans is associated with hypertension and altered structure and mechanical properties of large arteries. However, it is not known to what extent functional or structural changes in resistance arteries contribute to the elevated blood pressure that is characteristic of Eln insufficiency. Here, we investigated how Eln insufficiency affects the structure and function of the resistance vasculature. A functional profile of resistance vasculature in Eln(+/-) mice was generated by assessing small mesenteric artery (MA) contractile and vasodilatory responses to vasoactive agents. We found that Eln haploinsufficiency had a modest effect on phenylephrine-induced vasoconstriction, whereas ANG II-evoked vasoconstriction was markedly increased. Blockade of ANG II type 2 receptors with PD-123319 or modulation of Rho kinase activity with the inhibitor Y-27632 attenuated the augmented vasoconstriction, whereas acute Y-27632 administration normalized blood pressure in Eln(+/-) mice. Sodium nitroprusside- and isoproterenol-induced vasodilatation were normal, whereas ACh-induced vasodilatation was severely impaired in Eln(+/-) MAs. Histologically, the number of smooth muscle layers did not change in Eln(+/-) MAs; however, an additional discontinuous layer of Eln appeared between the smooth muscle layers that was absent in wild-type arteries. We conclude that high blood pressure arising from Eln insufficiency is due partly to permanent changes in vascular tone as a result of increased sensitivity of the resistance vasculature to circulating ANG II and to impaired vasodilatory mechanisms arising from endothelial dysfunction characterized by impaired endothelium-dependent vasodilatation. Eln insufficiency causes augmented ANG II-induced vasoconstriction in part through a novel mechanism that facilitates contraction evoked by ANG II type 2 receptors and altered G protein signaling.


Asunto(s)
Presión Arterial , Elastina/deficiencia , Hipertensión/metabolismo , Arterias Mesentéricas/metabolismo , Resistencia Vascular/efectos de los fármacos , Vasoconstricción , Vasodilatación , Angiotensina II/metabolismo , Animales , Presión Arterial/efectos de los fármacos , Calcio/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Elastina/genética , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Hemicigoto , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Hipertensión/patología , Hipertensión/fisiopatología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/patología , Arterias Mesentéricas/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Receptor de Angiotensina Tipo 2/efectos de los fármacos , Receptor de Angiotensina Tipo 2/metabolismo , Transducción de Señal/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
11.
Am J Med Genet A ; 164A(9): 2217-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24920525

RESUMEN

Previous examination in a small number of individuals with Williams syndrome (also referred to as Williams-Beuren syndrome) has shown subtly softer skin and reduced deposition of elastin, an elastic matrix protein important in tissue recoil. No quantitative information about skin elasticity in individuals with Williams syndrome is available; nor has there been a complete report of dermatologic findings in this population. To fill this knowledge gap, 94 patients with Williams syndrome aged 7-50 years were recruited as part of the skin and vascular elasticity (WS-SAVE) study. They underwent either a clinical dermatologic assessment by trained dermatologists (2010 WSA family meeting) or measurement of biomechanical properties of the skin with the DermaLab™ suction cup (2012 WSA family meeting). Clinical assessment confirmed that soft skin is common in this population (83%), as is premature graying of the hair (80% of those 20 years or older), while wrinkles (92%), and abnormal scarring (33%) were detected in larger than expected proportions. Biomechanical studies detected statistically significant differences in dP (the pressure required to lift the skin), dT (the time required to raise the skin through a prescribed gradient), VE (viscoelasticity), and E (Young's modulus) relative to matched controls. The RT (retraction time) also trended longer but was not significant. The biomechanical differences noted in these patients did not correlate with the presence of vascular defects also attributable to elastin insufficiency (vascular stiffness, hypertension, and arterial stenosis) suggesting the presence of tissue specific modifiers that modulate the impact of elastin insufficiency in each tissue.


Asunto(s)
Piel/patología , Síndrome de Williams/patología , Adolescente , Adulto , Fenómenos Biomecánicos , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Demografía , Familia , Color del Cabello , Humanos , Persona de Mediana Edad , Piel/fisiopatología , Enfermedades Vasculares/patología , Enfermedades Vasculares/fisiopatología , Síndrome de Williams/fisiopatología
12.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38015629

RESUMEN

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.


Asunto(s)
Encéfalo , Demencia Vascular , Receptor Notch3 , Animales , Humanos , Ratones , Encéfalo/metabolismo , CADASIL/genética , CADASIL/patología , Demencia Vascular/metabolismo , Ratones Noqueados , Mutación , Receptor Notch3/genética
13.
J Am Heart Assoc ; 13(3): e031377, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293922

RESUMEN

BACKGROUND: Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity. Little is known about genetic modifiers that contribute to this variability. METHODS AND RESULTS: We performed genome sequencing on 473 individuals with Williams-Beuren syndrome and developed strategies for modifier discovery in this rare disease population. Approaches include extreme phenotyping and nonsynonymous variant prioritization, followed by gene set enrichment and pathway-level association tests. We next used GTEx v8 and proteomic data sets to verify expression of candidate modifiers in relevant tissues. Finally, we evaluated overlap between the genes/pathways identified here and those ascertained through larger aortic disease/trait genome-wide association studies. We show that SVAS severity in Williams-Beuren syndrome is associated with increased frequency of common and rarer variants in matrisome and immune pathways. Two implicated matrisome genes (ACAN and LTBP4) were uniquely expressed in the aorta. Many genes in the identified pathways were previously reported in genome-wide association studies for aneurysm, bicuspid aortic valve, or aortic size. CONCLUSIONS: Smaller sample sizes in rare disease studies necessitate new approaches to detect modifiers. Our strategies identified variation in matrisome and immune pathways that are associated with SVAS severity. These findings suggest that, like other aortopathies, SVAS may be influenced by the balance of synthesis and degradation of matrisome proteins. Leveraging multiomic data and results from larger aorta-focused genome-wide association studies may accelerate modifier discovery for rare aortopathies like SVAS.


Asunto(s)
Estenosis Aórtica Supravalvular , Síndrome de Williams , Humanos , Síndrome de Williams/genética , Estudio de Asociación del Genoma Completo , Proteómica , Enfermedades Raras , Estenosis Aórtica Supravalvular/genética , Estenosis Aórtica Supravalvular/metabolismo , Estenosis Aórtica Supravalvular/cirugía
14.
J Biol Chem ; 287(26): 22055-67, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22573328

RESUMEN

Elastin is the extracellular matrix protein in vertebrates that provides elastic recoil to blood vessels, the lung, and skin. Because the elastin gene has undergone significant changes in the primate lineage, modeling elastin diseases in non-human animals can be problematic. To investigate the pathophysiology underlying a class of elastin gene mutations leading to autosomal dominant cutis laxa, we engineered a cutis laxa mutation (single base deletion) into the human elastin gene contained in a bacterial artificial chromosome. When expressed as a transgene in mice, mutant elastin was incorporated into elastic fibers in the skin and lung with adverse effects on tissue function. In contrast, only low levels of mutant protein incorporated into aortic elastin, which explains why the vasculature is relatively unaffected in this disease. RNA stability studies found that alternative exon splicing acts as a modifier of disease severity by influencing the spectrum of mutant transcripts that survive nonsense-mediated decay. Our results confirm the critical role of the C-terminal region of tropoelastin in elastic fiber assembly and suggest tissue-specific differences in the elastin assembly pathway.


Asunto(s)
Empalme Alternativo , Cutis Laxo/genética , Elastina/biosíntesis , Elastina/genética , Mutación , Animales , Aorta/metabolismo , Cromosomas Artificiales Bacterianos , Reactivos de Enlaces Cruzados/química , Elasticidad , Elastina/metabolismo , Exones , Fibroblastos/citología , Mutación del Sistema de Lectura , Genes Dominantes , Humanos , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína , ARN/química , Transgenes
15.
STAR Protoc ; 4(3): 102367, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37339049

RESUMEN

Mapping cranial vasculature and adjacent neurovascular interfaces in their entirety will enhance our understanding of central nervous system function in any physiologic state. We present a workflow to visualize in situ murine vasculature and surrounding cranial structures using terminal polymer casting of vessels, iterative sample processing and image acquisition, and automated image registration and processing. While this method does not obtain dynamic imaging due to mouse sacrifice, these studies can be performed before sacrifice and processed with other acquired images. For complete details on the use and execution of this protocol, please refer to Rosenblum et al.1.


Asunto(s)
Cráneo , Animales , Ratones , Flujo de Trabajo
16.
Cell Metab ; 5(2): 91-102, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276352

RESUMEN

Glucocorticoid excess causes insulin resistance and hypertension. Hepatic expression of PPARalpha (Ppara) is required for glucocorticoid-induced insulin resistance. Here we demonstrate that afferent fibers of the vagus nerve interface with hepatic Ppara expression to disrupt blood pressure and glucose homeostasis in response to glucocorticoids. Selective hepatic vagotomy decreased hyperglycemia, hyperinsulinemia, hepatic insulin resistance, Ppara expression, and phosphoenolpyruvate carboxykinase (PEPCK) enzyme activity in dexamethasone-treated Ppara(+/+) mice. Selective vagotomy also decreased blood pressure, adrenergic tone, renin activity, and urinary sodium retention in these mice. Hepatic reconstitution of Ppara in nondiabetic, normotensive dexamethasone-treated PPARalpha null mice increased glucose, insulin, hepatic PEPCK enzyme activity, blood pressure, and renin activity in sham-operated animals but not hepatic-vagotomized animals. Disruption of vagal afferent fibers by chemical or surgical means prevented glucocorticoid-induced metabolic derangements. We conclude that a dynamic interaction between hepatic Ppara expression and a vagal afferent pathway is essential for glucocorticoid induction of diabetes and hypertension.


Asunto(s)
Dexametasona/farmacología , Hipertensión/inducido químicamente , Resistencia a la Insulina/fisiología , Hígado/inervación , Hígado/metabolismo , PPAR alfa/metabolismo , Nervio Vago/fisiología , Vías Aferentes/efectos de los fármacos , Vías Aferentes/metabolismo , Vías Aferentes/cirugía , Vías Aferentes/ultraestructura , Animales , Presión Sanguínea/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/biosíntesis , Hígado/efectos de los fármacos , Hígado/ultraestructura , Ratones , Ratones Endogámicos C57BL , PPAR alfa/deficiencia , PPAR alfa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vagotomía , Nervio Vago/efectos de los fármacos , Nervio Vago/cirugía , Nervio Vago/ultraestructura
17.
J Biol Chem ; 286(52): 44926-36, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22049077

RESUMEN

Elastin haploinsufficiency causes the cardiovascular complications associated with Williams-Beuren syndrome and isolated supravalvular aortic stenosis. Significant variability exists in the vascular pathology in these individuals. Using the Eln(+/-) mouse, we sought to identify the source of this variability. Following outcrossing of C57Bl/6J Eln(+/-), two backgrounds were identified whose cardiovascular parameters deviated significantly from the parental strain. F1 progeny of the C57Bl/6J; Eln(+/-)x129X1/SvJ were more hypertensive and their arteries less compliant. In contrast, Eln(+/-) animals crossed to DBA/2J were protected from the pathologic changes associated with elastin insufficiency. Among the crosses, aortic elastin and collagen content did not correlate with quantitative vasculopathy traits. Quantitative trait locus analysis performed on F2 C57; Eln(+/-)x129 intercrosses identified highly significant peaks on chromosome 1 (LOD 9.7) for systolic blood pressure and on chromosome 9 (LOD 8.7) for aortic diameter. Additional peaks were identified that affect only Eln(+/-), including a region upstream of Eln on chromosome 5 (LOD 4.5). Bioinformatic analysis of the quantitative trait locus peaks revealed several interesting candidates, including Ren1, Ncf1, and Nos1; genes whose functions are unrelated to elastic fiber assembly, but whose effects may synergize with elastin insufficiency to predispose to hypertension and stiffer blood vessels. Real time RT-PCR studies show background-specific increased expression of Ncf1 (a subunit of the NOX2 NAPDH oxidase) that parallel the presence of increased oxidative stress in Eln(+/-) aortas. This finding raises the possibility that polymorphisms in genes affecting the generation of reactive oxygen species alter cardiovascular function in individuals with elastin haploinsufficiency through extrinsic noncomplementation.


Asunto(s)
Aorta/metabolismo , Elastina/metabolismo , Haploinsuficiencia , Hipertensión/metabolismo , Síndrome de Williams/metabolismo , Animales , Aorta/patología , Aorta/fisiopatología , Presión Sanguínea/genética , Cruzamientos Genéticos , Elastina/genética , Humanos , Hipertensión/genética , Hipertensión/patología , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Mutantes , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Tamaño de los Órganos , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Síndrome de Williams/genética , Síndrome de Williams/patología , Síndrome de Williams/fisiopatología
18.
Diagnostics (Basel) ; 12(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35741248

RESUMEN

Williams−Beuren syndrome (WS) results from the deletion of 25−27 coding genes, including elastin (ELN), on human chromosome 7q11.23. Elastin provides recoil to tissues; emphysema and chronic obstructive pulmonary disease have been linked to its destruction. Consequently, we hypothesized that elastin insufficiency would predispose to obstructive features. Twenty-two adults with WS (aged 18−55) and controls underwent pulmonary function testing, 6 min walk, and chest computed tomography (CT). Lung and airspace dimensions were assessed in Eln+/− and control mice via microCT and histology. The forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) were lower in adults with WS (p < 0.0001 and p < 0.05, respectively). The FEV1/FVC ratio was more frequently below the lower limit of normal in cases (p < 0.01). The ratio of residual volume to total lung capacity (RV/TLC, percent predicted) was higher in cases (p < 0.01), suggesting air trapping. People with WS showed reduced exercise capacity (p < 0.0001). In Eln+/− mice, ex vivo lung volumes were increased (p < 0.0001), with larger airspaces (p < 0.001). Together these data show that elastin insufficiency impacts lung physiology in the form of increased air trapping and obstruction, suggesting a role for lung function monitoring in adults with WS.

19.
Cell Rep Methods ; 2(1)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35373177

RESUMEN

Understanding physiologic and pathologic central nervous system function depends on our ability to map the entire in situ cranial vasculature and neurovascular interfaces. To accomplish this, we developed a non-invasive workflow to visualize murine cranial vasculature via polymer casting of vessels, iterative sample processing and micro-computed tomography, and automatic deformable image registration, feature extraction, and visualization. This methodology is applicable to any tissue and allows rapid exploration of normal and altered pathologic states.


Asunto(s)
Sistema Cardiovascular , Ratones , Animales , Microtomografía por Rayos X/métodos , Cráneo/diagnóstico por imagen
20.
Front Cardiovasc Med ; 9: 886813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665242

RESUMEN

Background: Williams Beuren syndrome (WBS) is a recurrent microdeletion disorder that removes one copy of elastin (ELN), resulting in large artery vasculopathy. Early stenosis of the pulmonary vascular tree is common, but few data are available on longer-term implications of the condition. Methods: Computed tomography (CT) angiogram (n = 11) and echocardiogram (n = 20) were performed in children with WBS aged 3.4-17.8 years. Controls (n = 11, aged 4.4-16.8 years) also underwent echocardiogram. Eln +/- mice were analyzed by invasive catheter, echocardiogram, micro-CT (µCT), histology, and pressure myography. We subsequently tested whether minoxidil resulted in improved pulmonary vascular endpoints. Results: WBS participants with a history of main or branch pulmonary artery (PA) stenosis requiring intervention continued to exhibit increased right ventricular systolic pressure (RVSP, echocardiogram) relative to their peers without intervention (p < 0.01), with no clear difference in PA size. Untreated Eln +/- mice also show elevated RVSP by invasive catheterization (p < 0.0001), increased normalized right heart mass (p < 0.01) and reduced caliber branch PAs by pressure myography (p < 0.0001). Eln +/- main PA medias are thickened histologically relative to Eln +/+ (p < 0.0001). Most Eln +/- phenotypes are shared by both sexes, but PA medial thickness is substantially greater in Eln +/- males (p < 0.001). Eln +/- mice showed more acute proximal branching angles (p < 0.0001) and longer vascular segment lengths (p < 0.0001) (µCT), with genotype differences emerging by P7. Diminished PA acceleration time (p < 0.001) and systolic notching (p < 0.0001) were also observed in Eln +/- echocardiography. Vascular casting plus µCT revealed longer generation-specific PA arcade length (p < 0.0001), with increased PA branching detectable by P90 (p < 0.0001). Post-weaning minoxidil decreased RVSP (p < 0.01) and normalized PA caliber (p < 0.0001) but not early-onset proximal branching angle or segment length, nor later-developing peripheral branch number. Conclusions: Vascular deficiencies beyond arterial caliber persist in individuals with WBS who have undergone PA stenosis intervention. Evaluation of Eln +/- mice reveals complex vascular changes that affect the proximal and distal vasculatures. Minoxidil, given post-weaning, decreases RVSP and improves lumen diameter, but does not alter other earlier-onset vascular patterns. Our data suggest additional therapies including minoxidil could be a useful adjunct to surgical therapy, and future trials should be considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA